summaryrefslogtreecommitdiff
path: root/mthread.cpp
blob: 7d1b31f88009654bbf7563b258e7826ae63a1859 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "mthread.hpp"
#include <iostream>
#include <complex>
#include <unistd.h>
#include <thread>
#include <chrono>
#include <cmath>
#include <algorithm>
#include <atomic>
using namespace std;

mthread::mthread(
    unsigned int x_mn, unsigned int x_mx, complex<double> c_min, complex<double> c_max, 
    unsigned int inf_cutoff, unsigned int max_iter, png& image, double *g_vmap, unsigned int *g_histogram, 
    mthread **worker_list, unsigned int id, unsigned int jobs, atomic<uint32_t>& progress) 
  : x_min_orig(x_mn), x_max_orig(x_mx), 
  c_min(c_min), c_max(c_max), 
  inf_cutoff(inf_cutoff), max_iter(max_iter), image(image), id(id), worker_cnt(jobs), progress(progress){

  workers = worker_list;
  x_min = x_mn;
  x_max = x_mx;
  y_min = 0;
  y_max = image.height();
  vmap = g_vmap;
  histogram = g_histogram;
  step = (c_max - c_min) / complex<double>(image.height(), image.width());
  my_thread = NULL;
  status.status_lock.lock();
}

void mthread::dispatch() {
  if((my_thread) && (my_thread->joinable())) delete my_thread;
  my_thread = new thread([this] {run();}); 
}


mthread::~mthread() {
  if((my_thread) && (my_thread->joinable())) {
    my_thread->join();
    delete my_thread;
  }
}


void mthread::join() {
  if((my_thread) && (my_thread->joinable())) my_thread->join();
}

bool mthread::find_work() {
  unsigned int worker, workers_finished;
  uint32_t loads[worker_cnt];
  struct mthread_status *peer_status;
  struct mthread_divinfo divinfo;
  workers_finished = 0;
  unique_lock<mutex> ack;

  status.status_lock.lock(); 
  status.searching = true;
  status.share_finished = true;
  status.status_lock.unlock();

  for(worker = 0; worker < worker_cnt; worker++) {
    //lock other worker so we can request from them
    peer_status = &workers[worker]->status; 
    peer_status->status_lock.lock();

    //if they're done, we remember that to see if we exit
    if((peer_status->share_finished) && (worker != id)) {
      workers_finished++;
    }
    
    /** The reason why we have this bit in code twice is to prevent race conditions.
     *  To add the potential canidate worker to our list to be sorted, 
     *  we need to make sure it's not currently being divided (true if div_syn is set). 
     *  Since we'll need to check the same later 
     *  when we actually request to split it's workload, 
     *  we might as well narrow it down and check everything else.
     *  **/
    if((worker == id) || 
        (peer_status->searching) || (peer_status->div_syn) || 
        (peer_status->row_load < min_lines)) {
      loads[worker] = 0;
      peer_status->status_lock.unlock();
      continue;
    }

    //finally, if they're valid, write them down
    loads[worker] = peer_status->row_load;
    peer_status->status_lock.unlock();
  }
  //exit if all workers are finished
  if(workers_finished >= worker_cnt - 1) {
    return false;
  }
  //then we look over and pick our canidates
  for(;;) {
    //find the worker who has the biggest workload
    worker = distance(loads, max_element(loads, &loads[worker_cnt]));
    if(!loads[worker]) return true; //we have found a worker; distance is 0
    peer_status = &workers[worker]->status;
    peer_status->status_lock.lock();

    //re-check to see if canidate is valid (may have changed since added and sorted). 
    //If you're wondering why we're doing this bit again, see comment before first time.
    if((peer_status->searching) || (peer_status->div_syn) || 
        (peer_status->row_load < min_lines)) {
      loads[worker] = 0;
      peer_status->status_lock.unlock();
      continue;
    }
    //ack: ask peer to devide
    ack = unique_lock<mutex>(peer_status->ack_lk);
    peer_status->div_syn = true;
    peer_status->status_lock.unlock();
    //when they reset it, they've acknowlaged and have set appropriate messages
    peer_status->msg_notify.wait(ack);
    ack.unlock();
    //area is too small to divide reliably
    if(peer_status->div_error) {
      loads[worker] = 0;
      peer_status->status_lock.lock();
      peer_status->div_error = false;
      peer_status->div_syn = false;
      peer_status->status_lock.unlock();
      continue;
    }

    //otherwise, we modify their struct for them to split their workload
    divinfo = workers[worker]->divide();
    peer_status->syn_ack_lk.unlock();

    //tell them we're done modifying
    peer_status->msg_notify.notify_all();

    //set our own stuff
    y_min = divinfo.y_min;
    y_max = divinfo.y_max;
    x_min = divinfo.x_min;
    x_max = divinfo.x_max;

    //update our status
    status.status_lock.lock();
    status.searching = false;
    status.status_lock.unlock();
    return true;
  }
  return true;
}

//makes sure no one is asking for work from us
void mthread::check_work_request() {
  unique_lock<mutex> syn_ack;

  status.status_lock.lock();
  status.row_load = y_max - on_y;
  //check if anyone's asking us to divide
  if(status.div_syn) {
    status.div_error = status.row_load <= min_lines;
    if(status.div_error) {
      status.ack_lk.unlock();
      status.msg_notify.notify_all();
    }
    else {
      syn_ack = unique_lock<mutex>(status.syn_ack_lk);
      status.ack_lk.unlock();
      status.msg_notify.notify_all();
      status.msg_notify.wait(syn_ack);
      status.row_load = y_max - on_y;
      syn_ack.unlock();
      //new x/y min/max is ajusted by other thread, we can continue as normal.
    }
  }
  status.status_lock.unlock(); 
}

//renders area
void mthread::render_area() { 
  uint32_t image_width = image.width();
  unsigned int iter;
  complex<double> c, z; 
  double pixel_value;

  /** pixel is drawn based on if/how many itertions it takes to get to infinity 
   * while computing z^2+c. **/

  for(on_y = y_min; on_y < y_max; on_y++) {
    progress++;
    check_work_request();
    for(on_x = x_min; on_x < x_max; on_x++) {
    c = (step * complex<double>(on_x,on_y)) + c_min;
    z = 0;
      for(iter = 0; iter < max_iter; iter++) {
        if(abs(z) >= inf_cutoff) break;
        z = z*z + c;
      }
      if(iter >= max_iter) {
        iter = 0;
        vmap[(on_y * image_width) + on_x] = 0;
      }
      else {
        pixel_value = (iter + 1) - (log((log(pow(abs(z), 2.0)) / 2.0) / log(2.0))); 
        vmap[(on_y * image_width) + on_x] = pixel_value;
        histogram[(int)pixel_value]++;
      }
    }
  }
}

//alternates states of finding work work and rendering
void mthread::run() {
  //locks in initilizer
  status.searching = false;
  status.share_finished = false;
  status.div_syn = false;
  status.div_error = false;
  status.status_lock.unlock();

  do {
    render_area();
  } while (find_work());

}


struct mthread_divinfo mthread::divide() {
  struct mthread_divinfo ret;
  ret.x_min = x_min;
  ret.x_max = x_max;
  ret.y_min = ((y_max - on_y) / 2) + on_y;
  ret.y_max = y_max;
  y_min = on_y;
  y_max = ret.y_min;
  status.div_syn = false;
  return ret;
}