1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
#include "mthread.hpp"
#include <iostream>
#include <complex>
#include <unistd.h>
#include <thread>
#include <chrono>
#include <cmath>
#include <algorithm>
#include <atomic>
using namespace std;
mthread::mthread(
unsigned int x_mn, unsigned int x_mx, complex<double> c_min, complex<double> c_max,
unsigned int inf_cutoff, unsigned int max_iter, png& image, double *g_vmap, unsigned int *g_histogram,
mthread **worker_list, unsigned int id, unsigned int jobs, atomic<uint32_t>& progress)
: x_min_orig(x_mn), x_max_orig(x_mx),
c_min(c_min), c_max(c_max),
inf_cutoff(inf_cutoff), max_iter(max_iter), image(image), id(id), worker_cnt(jobs), progress(progress){
workers = worker_list;
x_min = x_mn;
x_max = x_mx;
y_min = 0;
y_max = image.height();
vmap = g_vmap;
histogram = g_histogram;
step = (c_max - c_min) / complex<double>(image.height(), image.width());
my_thread = NULL;
}
void mthread::dispatch() {
if((my_thread) && (my_thread->joinable())) delete my_thread;
my_thread = new thread([this] {run();});
}
mthread::~mthread() {
if((my_thread) && (my_thread->joinable())) {
my_thread->join();
delete my_thread;
}
}
void mthread::join() {
if((my_thread) && (my_thread->joinable())) my_thread->join();
}
bool mthread::find_work() {
unsigned int worker, workers_finished;
uint32_t loads[worker_cnt];
struct mthread_status *peer_status;
struct mthread_divinfo divinfo;
workers_finished = 0;
unique_lock<mutex> ack;
status.status_lock.lock();
status.searching = true;
status.share_finished = true;
status.status_lock.unlock();
//TODO do we really need this whole for loop?
for(worker = 0; worker < worker_cnt; worker++) {
//lock other worker so we can request from them
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//if they're done, we remember that to see if we exit
if((peer_status->share_finished) && (worker != id)) {
workers_finished++;
}
//if they're us, currently looking for work,
//or don't have enough work for us to complete, then skip
if((worker == id) ||
(peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
//finally, if they're valid, write them down
loads[worker] = peer_status->row_load;
peer_status->status_lock.unlock();
}
//exit if all workers are finished
if(workers_finished >= worker_cnt - 1) {
return false;
}
//then we look over and pick our canidates
for(;;) {
//find the worker who has the biggest workload
worker = distance(loads, max_element(loads, &loads[worker_cnt]));
if(!loads[worker]) break; //we have found a worker; distance is 0
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//check to see if canidate is valid.
//TODO do we really need to check the first time?
if((peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
ack = unique_lock<mutex>(peer_status->ack_lk);
peer_status->div_syn = true;
peer_status->status_lock.unlock();
peer_status->msg_notify.wait(ack);
ack.unlock();
if(peer_status->div_error) {
loads[worker] = 0;
peer_status->status_lock.lock();
peer_status->div_error = false;
peer_status->div_syn = false;
peer_status->status_lock.unlock();
continue;
}
divinfo = workers[worker]->divide();
peer_status->syn_ack_lk.unlock();
peer_status->msg_notify.notify_all();
y_min = divinfo.y_min;
y_max = divinfo.y_max;
x_min = divinfo.x_min;
x_max = divinfo.x_max;
status.status_lock.lock();
status.searching = false;
status.status_lock.unlock();
break;
}
return true;
}
//makes sure no one is asking for work from us
void mthread::check_work_request() {
unique_lock<mutex> syn_ack;
status.status_lock.lock();
status.row_load = y_max - on_y;
//check if anyone's asking us to divide
if(status.div_syn) {
status.div_error = status.row_load <= min_lines;
if(status.div_error) {
status.ack_lk.unlock();
status.msg_notify.notify_all();
}
else {
syn_ack = unique_lock<mutex>(status.syn_ack_lk);
status.ack_lk.unlock();
status.msg_notify.notify_all();
status.msg_notify.wait(syn_ack);
status.row_load = y_max - on_y;
syn_ack.unlock();
//new x/y min/max is ajusted by other thread, we can continue as normal.
}
}
status.status_lock.unlock();
}
//renders area
void mthread::render_area() {
uint32_t image_width = image.width();
unsigned int iter;
complex<double> c, a; //TODO comment
double pixel_value;
for(on_y = y_min; on_y < y_max; on_y++) {
progress++;
check_work_request();
for(on_x = x_min; on_x < x_max; on_x++) {
c = (step * complex<double>(on_x,on_y)) + c_min;
a = 0;
for(iter = 0; iter < max_iter; iter++) {
if(abs(a) >= inf_cutoff) break;
a = a*a + c;
}
if(iter >= max_iter) {
iter = 0;
vmap[(on_y * image_width) + on_x] = 0;
}
else {
pixel_value = (iter + 1) - (log((log(pow(abs(a), 2.0)) / 2.0) / log(2.0)));
vmap[(on_y * image_width) + on_x] = pixel_value;
histogram[(int)pixel_value]++;
}
}
}
}
//alternates states of finding work work and rendering
void mthread::run() {
status.status_lock.lock(); //TODO move to initilizer
status.searching = false;
status.share_finished = false;
status.div_syn = false;
status.div_error = false;
status.status_lock.unlock();
do {
render_area();
} while (find_work());
}
//TODO move syncronization to another function for extensibility
struct mthread_divinfo mthread::divide() {
struct mthread_divinfo ret;
ret.x_min = x_min;
ret.x_max = x_max;
ret.y_min = ((y_max - on_y) / 2) + on_y;
ret.y_max = y_max;
y_min = on_y;
y_max = ret.y_min;
status.div_syn = false;
return ret;
}
|