428 lines
13 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <raylib.h>
#include <raymath.h>
#include <limits.h>
#include <complex.h>
#include <string.h>
#define WINDOW_SIZE_X 1600
#define WINDOW_SIZE_Y 800
#define RES_X 1600
#define RES_Y 800
#define DEFAULT_CENTER_X 0
#define DEFAULT_CENTER_Y 0
#define MOUSE_BUTTON 0
#define STEP_SIZE .1
#define ZOOM_SIZE .1
#define DECIMAL_LOC 28
#define DOUBLE_SCALER (1 << DECIMAL_LOC)
#define DOUBLE_TO_FIXED(val) (int32_t)((val) * DOUBLE_SCALER)
#define FIXED_MULTIPLY(x,y) ((((uint64_t)(x))*(y)) >> DECIMAL_LOC)
#define FIXED_TO_DOUBLE(val) ((val) / (double)DOUBLE_SCALER)
#define INFTY 2
#define INFTY_SQR INFTY * INFTY
#define ITERS 255
#define INFTY_SQR_FIXED DOUBLE_TO_FIXED(INFTY_SQR)
//#define SHIP
//#undef SHIP
#ifdef SHIP
Color get_color(int i) {
if(i == ITERS) return (Color){0, 0, 0, 255};
if(i == 0) return (Color){0, 0, 0, 255};
return (Color) {
2*(i - 128)+255,
0,
0,
255
};
}
#else
Color get_color(int i) {
// if((i == ITERS) || (i == 0)) return (Color){0, 0, 0, 255};
if(i == ITERS) return (Color){0,0,0,255};
if(i == 0) return (Color){0, 0, 0, 255};
if(i < 128) {
return (Color) {
(8*(i - 128)+255) & 0xff,
0,
(16*(i - 64)+255) & 0xff,
255
};
}
return (Color) {
0,
0,
((unsigned int)-2*(i - 128)+255) & 0xff,
255
};
}
#endif
struct camera {
double min_r, min_i, max_r, max_i;
};
typedef struct {
int32_t r; int32_t i;
} FixedCord;
static inline int iterate(FixedCord c) {
int32_t z_i = 0;
int32_t z_r = 0;
int32_t z_r_2, z_i_2, zn_r, zn_i;
for(int it = 0; it < ITERS; it++) {
z_r_2 = FIXED_MULTIPLY(z_r, z_r);
z_i_2 = FIXED_MULTIPLY(z_i, z_i);
zn_r = z_r_2 - z_i_2 + c.r;
#ifdef SHIP
zn_i = abs(FIXED_MULTIPLY((DOUBLE_TO_FIXED(2)), (FIXED_MULTIPLY(z_r, z_i)))) + c.i;
#else
zn_i = (FIXED_MULTIPLY((DOUBLE_TO_FIXED(2)), (FIXED_MULTIPLY(z_r, z_i)))) + c.i;
#endif
z_i = zn_i;
z_r = zn_r;
if(z_i_2 + z_r_2 > INFTY_SQR_FIXED) return it;
}
return ITERS;
}
//blllluuuuurg, matracies and vectors in raylib are floats and we need doubles
void shift_cam(struct camera *cam, double step_r, double step_i) {
double i_offset = (cam->max_i - cam->min_i) * step_i;
double r_offset = (cam->max_r - cam->min_r) * step_r;
cam->min_i += i_offset;
cam->max_i += i_offset;
cam->min_r += r_offset;
cam->max_r += r_offset;
}
void zoom_cam(struct camera *cam, double zoom) {
double i_scale = (cam->max_i - cam->min_i) * zoom;
double r_scale = (cam->max_r - cam->min_r) * zoom;
cam->min_i += i_scale;
cam->max_i -= i_scale;
cam->min_r += r_scale;
cam->max_r -= r_scale;
}
enum DIRECTIONS {
N, NE, E, SE, S, SW, W, NW
};
//we can inline these if needed
inline bool bitarray_check(uint8_t *array, size_t i) {
return array[i/8] & (1 << (i%8));
}
inline void bitarray_set(uint8_t *array, size_t i) {
array[i/8] |= (1 << (i%8));
}
inline FixedCord get_neighbor_coord(FixedCord from_coord, int direction, FixedCord step) {
if((direction == NW) || (direction < E)) from_coord.i += step.i;
if((direction > N) && (direction < S)) from_coord.r += step.r;
if((direction > E) && (direction < W)) from_coord.i -= step.i;
if(direction > S) from_coord.r -= step.r;
return from_coord;
}
FixedCord get_neighbor_coord(FixedCord from_coord, int direction, FixedCord step);
size_t get_neighbor_index(size_t from_pixel, int direction) {
const size_t neighbor_index_accl[8] =
{-RES_X, -RES_X + 1, 1, RES_X + 1, RES_X, RES_X - 1, -1, -RES_X - 1};
from_pixel += neighbor_index_accl[direction];
//canidate for optimization; lots of branches. maybe inline
return from_pixel;
}
bool bitarray_check(uint8_t *array, size_t i);
void bitarray_set(uint8_t *array, size_t i);
#define BITARRAY_SET(array, i) ((array)[(i)/8] |= (1 << ((i) % 8)))
#define BITARRAY_CLEAR(array, i) ((array)[(i)/8] &= ~(1 << ((i) % 8)))
#define BITARRAY_CHECK(array, i) ((array)[(i)/8] & (1 << ((i) % 8)))
//a lot of these are just so I can keep track of my cases while I program this, simplification will happen later
enum CANIDATE_STATUS {
UNSOLVED = 0,
M_ELEMENT,
M_EXTERIOR,
M_INTERIOR,
M_VISITED, //part of the curve we've been drawing
M_SKETCHY_SUSPENSION_ROPE_BRIDGE_TYPE_SHIT
};
unsigned int mandelbrot_bordertrace(struct camera *cam, Color *pixels) {
//these lookup tables r cheap cuz on the stm32f1, 1 memory read is 1 instruction
FixedCord scale = {
.r = DOUBLE_TO_FIXED((cam->max_r - cam->min_r) / (double)RES_X),
.i = DOUBLE_TO_FIXED((cam->max_i - cam->min_i) / (double)RES_Y)};
FixedCord c = {.r = 0, .i = DOUBLE_TO_FIXED(cam->max_i)};
unsigned int total_iters = 0;
size_t on_pixel = 0;
uint8_t border[(RES_X*RES_Y)/8] = {0};
//having these r kinda gross, will restructure later
int32_t cam_bord_fixed_n = DOUBLE_TO_FIXED(cam->min_i);
int32_t cam_bord_fixed_s = DOUBLE_TO_FIXED(cam->max_i);
int32_t cam_bord_fixed_e = DOUBLE_TO_FIXED(cam->max_r);
int32_t cam_bord_fixed_w = DOUBLE_TO_FIXED(cam->min_r);
/**
//for keeping track of border only. will organize later
uint8_t set[(160*80)/8] = {0};
uint8_t unset[(160*80)/8] = {0};
**/
for(int y = 0; y < RES_Y; y++) {
c.r = DOUBLE_TO_FIXED(cam->min_r);
for(int x = 0; x < RES_X; x++) {
uint8_t border_bit = BITARRAY_CHECK(border, on_pixel);
int i = iterate(c);
total_iters += i;
pixels[on_pixel] = get_color(i);
const Color debug_colors[] =
{ (Color) {0xff, 0x00, 0x00, 0xff},
(Color) {0xff, 0x00, 0xff, 0xff},
(Color) {0x00, 0xff, 0x00, 0xff},
(Color) {0x00, 0x00, 0xff, 0xff},
(Color) {0x6a, 0x00, 0xff, 0xff}
};
static int on_dbg_color = 0;
//this is where it all begins
uint8_t rendered[(RES_X*RES_Y)/8] = {0};
uint8_t deadend[(RES_X*RES_Y)/8] = {0};
if(i == ITERS) {
BORDER_START:
__attribute__((unused));
//just makes getting index of neigbor easier; doesn't cost extra cycles
FixedCord starting_bord_cord = c;
FixedCord current_bord_cord = c;
FixedCord last_bord_cord;
int previous_neighbors[8] = {UNSOLVED};
int current_neighbors[8] = {UNSOLVED};
current_neighbors[W] = UNSOLVED;
size_t current_bord_i = on_pixel;
uint8_t visited_border[(RES_X*RES_Y)/8] = {0};
int source_dir = 0;
size_t prev_bord_i = 0;
while(true) {
int filled_neighbors = 0;
//find if we're pushed against screen border.
//find a less gross way to do this
if((current_bord_cord.i - scale.i) < cam_bord_fixed_n) {
for(int nei_dir = SE; nei_dir <= SW; nei_dir++)
current_neighbors[nei_dir] = M_EXTERIOR;
}
if((current_bord_cord.i + scale.i) > cam_bord_fixed_s) {
current_neighbors[NE] = M_EXTERIOR;
current_neighbors[N] = M_EXTERIOR;
current_neighbors[NW] = M_EXTERIOR;
}
if((current_bord_cord.r - scale.r) < cam_bord_fixed_w) {
for(int nei_dir = SW; nei_dir < NW; nei_dir++)
current_neighbors[nei_dir] = M_EXTERIOR;
}
if((current_bord_cord.r + scale.r) > cam_bord_fixed_e) {
for(int nei_dir = NE; nei_dir < SE; nei_dir++)
current_neighbors[nei_dir] = M_EXTERIOR;
}
//get info on neighbors, fill in missing current_neighbors info
for(int nei_dir = 0; nei_dir < 8; nei_dir++) {
size_t nei_i = get_neighbor_index(current_bord_i, nei_dir);
if(current_neighbors[nei_dir] == M_EXTERIOR) continue;
if(current_neighbors[nei_dir] != UNSOLVED) {
filled_neighbors++;
continue;
}
if(current_neighbors[nei_dir] == M_VISITED) continue;
if(BITARRAY_CHECK(visited_border, nei_i)) {
current_neighbors[nei_dir] = M_VISITED;
filled_neighbors++;
continue;
}
int i = iterate(get_neighbor_coord(current_bord_cord, nei_dir, scale));
total_iters += i;
if(i == ITERS) {
current_neighbors[nei_dir] = M_ELEMENT;
filled_neighbors++;
continue;
}
current_neighbors[nei_dir] = M_EXTERIOR;
}
if(filled_neighbors >= 8) {
memcpy(current_neighbors, previous_neighbors, sizeof(current_neighbors));
current_bord_cord = last_bord_cord;
current_bord_i = prev_bord_i;
current_neighbors[source_dir] = M_INTERIOR;
}
BeginDrawing();
DrawPixel(current_bord_i % RES_X, current_bord_i / RES_X, debug_colors[on_dbg_color]);
EndDrawing();
int nei_dir;
memcpy(previous_neighbors, current_neighbors, sizeof(current_neighbors));
memset(current_neighbors, 0, sizeof(current_neighbors));
for(nei_dir = 0; nei_dir < 8; nei_dir++) {
//found a valid neighbor to switch to
if(previous_neighbors[nei_dir] == M_ELEMENT) {
BITARRAY_SET(visited_border, current_bord_i);
current_neighbors[(nei_dir + 4) % 8] = M_VISITED;
if(nei_dir % 2) { //diagnals
current_neighbors[(nei_dir + 3) % 8] = previous_neighbors[(nei_dir + 1) % 8];
current_neighbors[(nei_dir + 5) % 8] = previous_neighbors[(nei_dir - 1) % 8];
}
else {
current_neighbors[(nei_dir + 2) % 8] = previous_neighbors[(nei_dir + 1) % 8];
current_neighbors[(nei_dir + 3) % 8] = previous_neighbors[(nei_dir + 2) % 8];
current_neighbors[(nei_dir + 5) % 8] = previous_neighbors[(nei_dir - 2) % 8];
current_neighbors[(nei_dir + 6) % 8] = previous_neighbors[(nei_dir - 1) % 8];
}
last_bord_cord = current_bord_cord;
current_bord_cord = get_neighbor_coord(current_bord_cord, nei_dir, scale);
prev_bord_i = current_bord_i;
current_bord_i = get_neighbor_index(current_bord_i, nei_dir);
source_dir = nei_dir;
break;
}
}
if(!memcmp(&current_bord_cord, &starting_bord_cord, sizeof(current_bord_cord))) {
for(size_t bord_i = 0; bord_i < sizeof(border); bord_i++){
border[bord_i] |= visited_border[bord_i];
break;
}
}
printf("%zu: ", prev_bord_i);
printf("(%zu, %zu) -> (%zu, %zu) | {", prev_bord_i % RES_X, prev_bord_i / RES_X, current_bord_i % RES_X, current_bord_i / RES_X);
for(int i = 0; i < 8; i++) printf("%i, ", previous_neighbors[i]);
printf("} -> {");
for(int i = 0; i < 8; i++) printf("%i, ", current_neighbors[i]);
printf("}\n");
if(nei_dir > 7) break;
//printf("loop\n");
}
on_dbg_color = (on_dbg_color + 1) % (sizeof(debug_colors) / sizeof(*debug_colors));
}
on_pixel++;
c.r += scale.r;
}
c.i -= scale.i;
}
return total_iters;
}
unsigned int mandelbrot_unoptimized(struct camera *cam, Color *pixels) {
FixedCord scale = { .r = DOUBLE_TO_FIXED((cam->max_r - cam->min_r) / (double)RES_X), .i = DOUBLE_TO_FIXED((cam->max_i - cam->min_i) / (double)RES_Y) };
FixedCord c = { .r = 0, .i = DOUBLE_TO_FIXED(cam->max_i) };
unsigned int total_iters = 0;
for(int y = 0; y < RES_Y; y++) {
c.r = DOUBLE_TO_FIXED(cam->min_r);
for(int x = 0; x < RES_X; x++) {
int i = iterate(c);
total_iters += i;
pixels[((y * RES_X) + x)] = get_color(i);
c.r += scale.r;
}
c.i -= scale.i;
}
return total_iters;
}
void test() {
uint8_t bitarray[(160*80)/8] = {0};
int test_i = 9;
BITARRAY_SET(bitarray, test_i);
printf("%s\n", BITARRAY_CHECK(bitarray, 9) ? "true" : "false");
}
int main() {
//test();
//return 0;
Color *pixels = malloc(RES_X * RES_Y * sizeof(Color));
struct camera cam = {
.min_r = -1,
.max_r = 1,
// .min_i = -1,
// .max_i = 1
};
cam.min_i = ((double)RES_Y / RES_X) * cam.min_r;
cam.max_i = ((double)RES_Y / RES_X) * cam.max_r;
InitWindow(WINDOW_SIZE_X, WINDOW_SIZE_Y, "mandelbrot fixed point test");
Image img = GenImageColor(RES_X, RES_Y, BLUE);
Texture tex = LoadTextureFromImage(img);
UnloadImage(img);
SetTargetFPS(0);
while(!WindowShouldClose()) {
switch(GetKeyPressed()) {
case KEY_UP:
shift_cam(&cam, 0, STEP_SIZE);
break;
case KEY_DOWN:
shift_cam(&cam, 0, -STEP_SIZE);
break;
case KEY_RIGHT:
shift_cam(&cam, STEP_SIZE, 0);
break;
case KEY_LEFT:
shift_cam(&cam, -STEP_SIZE, 0);
break;
case KEY_W:
zoom_cam(&cam, ZOOM_SIZE);
break;
case KEY_S:
zoom_cam(&cam, -ZOOM_SIZE);
break;
default:
BeginDrawing();
EndDrawing();
continue;
break;
}
printf("(%.21f, %.21f) - (%.21f, %.21f)\n", cam.min_r, cam.min_i, cam.max_r, cam.max_i);
printf("Unoptimized: %u iterations\n", mandelbrot_unoptimized(&cam, pixels));
printf("Border tracing: %u iterations\n", mandelbrot_bordertrace(&cam, pixels));
BeginDrawing();
UpdateTexture(tex, pixels);
DrawTextureEx(tex, (Vector2){0,0}, 0, (float)GetRenderWidth()/RES_X, WHITE);
EndDrawing();
}
return 0;
}