//#include #define PI 3.141592653589793115997963468544185161590576171875 double cosecant_single(double a, double b) { return a / cos(b); } double secant_single(double a, double b) { return a / cos(b); } /** __kernel void render_frame_orbit_trap(__global double *frame_output, __global double *mask, double x_step, double y_step, double x_start, double y_start, unsigned int iterations, unsigned int escape, double ratio) { const vec2 point = (0, 0); unsigned int result; unsigned int iter; double min_distance = DBL_MAX; for(iter = 0; iter < iterations; iter++) { double next_x; double r = mask[img_index]; next_x = (r * cosecant_single(x, y)) + ((1 - r) * secant_single(x, y)); y = (r * cosecant_single(y, x)) + ((1 - r) * secant_single(y, x)); x = next_x; if((pow(x, 2) + pow(y, 2)) >= escape) break; } frame_output[img_index] = total_curve / iter; } **/ __kernel void render_frame_curvature(__global double *frame_output, __global double *mask, double x_step, double y_step, double x_start, double y_start, unsigned int iterations, unsigned int escape, double ratio) { unsigned int result; unsigned int iter; double x_cart = (get_global_id(0) * x_step) + x_start; double y_cart = (get_global_id(1) * y_step) + y_start; double x = sqrt(pow(x_cart, 2) + pow(y_cart, 2)); double y = atan(y_cart / x_cart); //double x = (get_global_id(0) * x_step) + x_start; //double y = (get_global_id(1) * y_step) + y_start; size_t img_index = (get_global_id(1) * get_global_size(1)) + get_global_id(0); double total_curve = 0; //just found out vectors are a thing double2 lp[3]; for(iter = 0; iter < iterations; iter++) { double next_x; double r = mask[img_index]; next_x = (r * secant_single(x, y)) + ((1 - r) * cosecant_single(x, y)); y = (r * secant_single(y, x)) + ((1 - r) * cosecant_single(y, x)); x = next_x; if((pow(x, 2) + pow(y, 2)) >= escape) break; lp[2] = lp[1]; lp[1] = lp[0]; lp[0] = (double2)(x, y); //why do I have to cast this? hope no accuracy lost /** if(img_index == 254234) { printf("%u\n", ratio); } **/ if(iter >= 2) { double curl = acos(dot((lp[0] - lp[1]), (lp[2] - lp[1])) / (distance(lp[0], lp[1]) * distance(lp[2], lp[1]))); total_curve = (total_curve + curl); } } frame_output[img_index] = total_curve / iter; } __kernel void render_frame(__global double *frame_output, __global double *mask, double x_step, double y_step, double x_start, double y_start, unsigned int iterations, unsigned int escape, double ratio) { unsigned int result; double x_cart = (get_global_id(0) * x_step) + x_start; double y_cart = (get_global_id(1) * y_step) + y_start; size_t img_index = (get_global_id(1) * get_global_size(1)) + get_global_id(0); double x = sqrt(pow(x_cart, 2) + pow(y_cart, 2)); double y = atan(y_cart / x_cart); //double x = (get_global_id(0) * x_step) + x_start; //double y = (get_global_id(1) * y_step) + y_start; unsigned int iter; //vec2 pos; for(iter = 0; iter < iterations; iter++) { double next_x; double r = ratio; next_x = (r * cosecant_single(x, y)) + ((1 - r) * secant_single(x, y)); y = (r * cosecant_single(y, x)) + ((1 - r) * secant_single(y, x)); x = next_x; //if(distance(pos) >= escape) break; if((pow(x, 2) + pow(y, 2)) >= escape) break; } //TODO turn back to int whenever frame_output[img_index] = (double)iter; //frame_output[img_index] = mask[img_index] * 255; }