
Mandelbrot

Description

This program is made to draw the mandelbrot fractal.

Colors are calculated using normalized iteration count; histogram coloring,
logarithmic smoothing, and linear regression are combined for smooth color

transitions.

To speed up render times, it utilizes multiple threads to render multiple sections
of the image at once.

When a thread is done, it will communicate with other threads to share the
remaining load. This improves speed by an average of 53%.

The thread is set up for polymorphism; it’s easy to redefine the rendering
method while keeping synchronization.

Usage and Defaults
Program options and defaults can be shown by passing “-h”.

See image folder for default render result.
Usage: ./mandelbrot [options]

Options:

-h this cruft

-w image width default: 1920

-H image height default: 1080

-o image output path default: out.png

-j jobs -- set this to your corecount default: 1

-c complex bottom border default: (-0.74364389269000009,0.13182587270999999)

-C complex top border default: (-0.74364383269000001,0.13182593271000001)

-i fractal iterations default: 50000

-I bailout value default: 256

FOR COMPLEX NUMBERS: if you want to input, say, 2-3i, your option argument will be "(2,-3)".

Design
The following is a list of steps the program takes.

Main
Parse user options, change values if necessary
Allocate large arrays needed to hold values for mandelbrot
Create a mthread object for each job/thread
Call thread.spawn_render()
Periodically read progress variable and show percentage
When progress is full, for each mthread, call mthread.join()
Colorize photo using values obtained by mthreads

Mthread::spawn_thread() creates a thread executing mthread’s main procedure.

Mthread procedure
Set synchronization flags to zero
For each row: (location 1)

Add progress
Calculate and set rows remaining (row_load)
If syn flag set: Communicate with thread as shown by diagram below
For each pixel:

Find mandelbrot value (more details in citation), add to double array
Using calculated value as index, add 1 to element in histogram array.

Set searching = true and load_finished = true
Obtain list of other threads, sort by largest load
count how many have load_finished set into loads_finished
If loads_finished == jobs - 1: return
For each thread, starting with the largest load:

Double check thread status and communicate as shown by diagram below
Go to location 1

Known bugs:
If the coordinates supplied differ from the images aspect ratio, renders are

distorted to fit the given coordinates.
It may be possible to optimize thread locking to decrease code complexity.

It would be faster to use a GPU for rendering; it wasn’t possible to learn OpenCL
or Cuda in the allocated time.

The following diagram shows communication during request to divide workload:

To determine a pixel's color, there’s three major arrays: the histogram and value map,
which are calculated by each thread, and the hue map, which is calculated after.

The histogram contains how often each floored value in the value map is hit.
The value map contains a calculated double for each pixel.

Colors are generated using the following procedure:
1. Get sum of all values in histogram
2. For each histogram element:

Current saturation += histogram element / histogram sum
Add curent_saturation to hue array

3. For each pixel:
Use floored value as index in hue array
Record hue of current and next index
Find the midpoint of the two colors using value found in value map

Roadmap

Feature Size

Figure out libpng, create png object Large

Figure out std threads, get mthread independently threading Medium

Draw and save basic fractal with multiple threads Small

Finish fractal coloring shading, coloring, etc Large

Learn more about std synchronization primitives; plan thread
synchronization after workload of a thread is complete

Large

Implement threads, test for race conditions, debug any issues Extra large

Refactor old code Medium

Delete and replace constants with getopt options Medium

Find some cool coordinates for screenshots and default options Medium

Postmortem

I panicked a bit about race conditions and synchronization, but after I took time to
understand and test concepts such as condition variables it was easier to implement than
expected. I timed the program before and after I enabled idle threads to share loads, and it was
about 53% faster; distributing the workloads paid off. It was very exciting to create the images
that are included in the screenshots, even if I wish I could have more time to tweak the coloring
off of a simple hue ramp.

In the end, the synchronization code became very disorganized. Due to a lack of time, I
didn’t have time to fully think through all possible race conditions. As a result, some of the
code may be a bit slow; I lock all publicly shared data at once, and threads needing to access
it wait until it’s available, regardless of whether or not the data it needs is about to be modified.
Additionally, I’m not 100% sure if race conditions are completely eliminated… I had a single
segfault, and no matter how hard I tried, I could not reproduce it.

I also feel like I didn’t really understand the logarithmic aspect of the smooth shading.
While it only contributes to smoothing out the histogram coloring method, I wish I could
optimize it; with finals in other classes coming up I couldn’t afford the time.

Next time I’d give myself more time to plan the synchronization aspect, and fully
understand the logarithmic smoothing.

Citations

Condition variable: https://cplusplus.com/reference/condition_variable/condition_variable/

Mandelbrot shading: (smooth shading section)
https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Continuous_(smooth)_coloring

Mandelbrot general concept: https://en.wikipedia.org/wiki/Mandelbrot_set

Mutex: https://www.cplusplus.com/reference/mutex/

Starting thread with member function:
https://stackoverflow.com/questions/10673585/start-thread-with-member-function

Threads: https://www.cplusplus.com/reference/thread/thread/

Screenshots

Full scale renders are in docs/images.
Program running is in docs/demo.mp4

https://cplusplus.com/reference/condition_variable/condition_variable/
https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Continuous_(smooth)_coloring
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.cplusplus.com/reference/mutex/
https://stackoverflow.com/questions/10673585/start-thread-with-member-function
https://www.cplusplus.com/reference/thread/thread/

./mandelbrot -w 1920 -H 1080 -o demo_2.png -c "(-0.74364387269, 0.13182589271)" -C "(-0.74364385269, 0.13182591271)" -i 50000 -I 256
“Seahorse valley” - higher zoom of last image.

./mandelbrot -w 2000 -H 2000 -o demo_3.png -c "(-2, -1)" -C "(1, 1)" -i 1000 -I 2
All the way zoomed out. Easiest to render.

./mandelbrot -w 1920 -H 1080 -o demo_1.png -c "(-0.74364389269,0.13182587271)" -C "(-0.74364383269,0.13182593271)" -i 50000 -I 256
“Seahorse valley”

