#include #include #include #include #include #include void debug_print_memory() { struct memory_table *memtable = (struct memory_table *)&_meminfo_loc; printf(" __________________________________________________________________________\n"); printf("| type\tstart\t\t\tend\t\t\tsize\t\t |\n"); printf("|--------------------------------------------------------------------------|\n"); for(unsigned int i = 0; memtable[i].length > 0; i++) { printf("| %u %u\t0x%p\t0x%p\t0x%p |\n", memtable[i].type, memtable[i].ACPI, memtable[i].base, (memtable[i].base + memtable[i].length), memtable[i].length); } printf("----------------------------------------------------------------------------\n"); } void debug_pmap() { struct phys_map* pmap; int pmap_i = 0, order; uint64_t buddy_size, blong_i, bbit_i, buddy_chunksize, omit_cnt; printf("Maximum buddy order: %u (up to %#x sized chunks)\n", MAX_BUDDY_ORDER, (0x1000 << MAX_BUDDY_ORDER - 1)); for(pmap = (struct phys_map*)&_stage2_pagetable; pmap != 0; pmap = pmap->next) { printf("Table %u:\n" "\tPhysical Start:\t%#p\n" "\tTable location:\t%#p\n", pmap_i, pmap->zone_paddr, pmap); for(order = 0; order <= MAX_BUDDY_ORDER - 1; order++) { buddy_chunksize = (0x1000 << order); //TODO just put it in the for loop buddy_size = (((order == MAX_BUDDY_ORDER - 1) ? (uint64_t *)pmap->next : pmap->buddy[order + 1]) - pmap->buddy[order]); printf("\tbuddy[%u]:\n" "\t\tAddress:\t%#x\n" "\t\tSize:\t\t%u\n" "\t\tBuddies:\t\t\n", order, pmap->buddy[order], buddy_size); omit_cnt = 0; for(blong_i = 0; blong_i < buddy_size; blong_i++) { for(bbit_i = 0; bbit_i < 64; bbit_i++) { if(*(pmap->buddy[order] + blong_i) & ((uint64_t)1 << bbit_i)) { if((omit_cnt < 20) || (blong_i == buddy_size - 1)) { printf("address %#x\tbit %u: %p\t is free\n", pmap->buddy[order] + blong_i, bbit_i, (uint64_t)pmap->zone_paddr + (((blong_i * 64) + bbit_i) * buddy_chunksize)); } omit_cnt++; if(omit_cnt == 20) { printf("\t\t\t[more entries ommited]\n"); } } } } } pmap_i++; } } void init_pmap() { struct memory_table *zones = (struct memory_table *)&_meminfo_loc; struct phys_map *pmap = (struct phys_map*)&_stage2_pagetable; unsigned int zone_i, pmap_i = 0; int budorder; //we keep this info out of the struct because we won't need it after setting up uint64_t zone_len[MAX_ZONE_CNT], buddy_bitlen[MAX_ZONE_CNT][MAX_BUDDY_ORDER], *buddy_end; uint64_t pmap_size, pmap_bbitsize, pmap_blongsize, buddy_size, buddy_bit, pmap_bit; uint64_t threshold_bitsize, threshold_longsize = 0; void *paged_mem = (void *)&_stage2_pagetable + 0x200000; map_page(&_stage2_pagetable, &_stage2_pagetable, PAGE_SIZE_2M); for(zone_i = 0; zones[zone_i].length > 0; zone_i++) { if((zones[zone_i].type == MEM_AVAILABLE) && (zones[zone_i].ACPI & 1)) { //hopefully this should never happen... //I should dig into the docs to check before removing this. //We also could forget about MAX_ZONE_CNT if we did. if(zone_i >= MAX_ZONE_CNT) { printf("Only %u zones can be used! Modify MAX_ZONE_CNT in paging.h to use all memory.\n", MAX_ZONE_CNT); break; } if((zones[zone_i].base <= (void*)&_stage2_pagetable) && (zones[zone_i].base + zones[zone_i].length >= (void *)&_stage2_pagetable)) { pmap->zone_paddr = &_stage2_pagetable; zone_len[pmap_i] = zones[zone_i].length - (pmap->zone_paddr - zones[zone_i].base); } else { pmap->zone_paddr = zones[zone_i].base; zone_len[pmap_i] = zones[zone_i].length; } pmap->buddy[0] = (void *)pmap + sizeof(*pmap); for(budorder = 1; budorder < MAX_BUDDY_ORDER; budorder++) { buddy_bitlen[pmap_i][budorder - 1] = GET_BUDDY_BITLEN(zone_len[pmap_i], budorder - 1); pmap->buddy[budorder] = (uint64_t *)pmap->buddy[budorder - 1] + LSIZE_FROM_BITLEN(buddy_bitlen[pmap_i][budorder - 1]); } buddy_bitlen[pmap_i][MAX_BUDDY_ORDER - 1] = GET_BUDDY_BITLEN(zone_len[pmap_i], MAX_BUDDY_ORDER - 1); pmap->next = (void *)pmap->buddy[MAX_BUDDY_ORDER - 1] + (LSIZE_FROM_BITLEN(buddy_bitlen[pmap_i][MAX_BUDDY_ORDER - 1]) * 8); pmap = pmap->next; pmap_i++; //allocates by an extra sizeof(struct phys_map), //but were about to discard anyway while((void *)pmap + sizeof(*pmap) >= paged_mem) { map_page(paged_mem, paged_mem, PAGE_SIZE_2M); paged_mem += 0x200000; } } } pmap_size = (void*)(pmap) - (void*)&_stage2_pagetable; if(pmap_size >= zone_len[0]) panic(); //TODO debugging pmap_i = 0; for(pmap = (struct phys_map*)&_stage2_pagetable; pmap->next != 0; pmap = pmap->next) { for(budorder = MAX_BUDDY_ORDER - 1; budorder >= 0; budorder--) { pmap_bbitsize = ceil((float)pmap_size / ((uint64_t)0x1000 << budorder)); pmap_blongsize = pmap_bbitsize / 64; if(budorder == MAX_BUDDY_ORDER - 1) { buddy_size = (uint64_t *)pmap->next - pmap->buddy[budorder]; buddy_end = (uint64_t *)pmap->next - 1; threshold_bitsize = ((pmap_blongsize * 64) + pmap_bbitsize) * 2; } else { buddy_size = pmap->buddy[budorder + 1] - pmap->buddy[budorder]; buddy_end = pmap->buddy[budorder + 1] - 1; threshold_longsize = threshold_bitsize / 64; } pmap_bit = pmap_bbitsize & 63; buddy_bit = buddy_bitlen[pmap_i][budorder] & 63; if((pmap_bbitsize >= BITLEN_FROM_LSIZE(buddy_size)) && (pmap == (void *)&_stage2_pagetable)) { bzero(pmap->buddy[budorder], buddy_size * 8); } else { if(budorder == MAX_BUDDY_ORDER - 1) { if(pmap == (void*)&_stage2_pagetable) { if(pmap_blongsize) bzero(pmap->buddy[budorder], (pmap_blongsize - 1) * 8); if(pmap_bit) { *(pmap->buddy[budorder] + pmap_blongsize) = ~(((uint64_t)1 << pmap_bit) - 1); } else { *(pmap->buddy[budorder] + pmap_blongsize) = UINT64_MAX; } if(pmap_blongsize + 1 == buddy_size) { *buddy_end &= ((uint64_t)1 << buddy_bit) - 1; } else { memset(pmap->buddy[budorder] + pmap_blongsize + 1, UINT8_MAX, (buddy_size - 1) * 8); if(buddy_bit) { *buddy_end = ((uint64_t)1 << buddy_bit) - 1; } else { *buddy_end = UINT64_MAX; } } threshold_bitsize = ((pmap_blongsize * 64) + pmap_bbitsize) * 2; } else { memset(pmap->buddy[budorder], UINT8_MAX, (buddy_size - 1) * 8); if(buddy_bit) { *buddy_end = ((uint64_t)1 << buddy_bit) - 1; } else { *buddy_end = UINT64_MAX; } } } else if(pmap == (void *)&_stage2_pagetable) { if(threshold_longsize) bzero(pmap->buddy[budorder], (threshold_longsize - 1) * 8); if(threshold_bitsize > pmap_bbitsize) *(pmap->buddy[budorder] + threshold_longsize) = ((uint64_t)1 << ((threshold_bitsize - 1) & 63)); if(buddy_size - threshold_longsize) bzero(pmap->buddy[budorder] + threshold_longsize + 1, buddy_size - threshold_longsize); if(buddy_bit & 1) { *buddy_end = ((uint64_t)1 << (buddy_bit - 1)); } threshold_bitsize = ((pmap_blongsize * 64) + pmap_bbitsize) * 2; } else { bzero(pmap->buddy[budorder], buddy_size); if(buddy_bit & 1) { *buddy_end = ((uint64_t)1 << ((buddy_bit) - 1)); } } } } pmap_i++; } } /** * BIG TODO: * Paging turned out to be simpler then I thought. I've temporarily fixed the code, but needs to be rewritten/simplified. * Let's get rid of those nasty GOTOs if we can. * Also, once we get physical memory allocator up and running, impliment that in this function. **/ bool map_page(void *virtual_addr, void *physical_addr, uint8_t size) { //printf("map page called\n"); uintptr_t va_ptr = (uintptr_t)virtual_addr; uintptr_t pa_ptr = (uintptr_t)physical_addr; if((va_ptr % (1 << size)) || (pa_ptr % (1 << size))) { return 0; } page_table *table = (page_table *)PAGEMAP_LOCATION; int pte_i = (va_ptr >> 12) & 0x1ff; int pde_i = (va_ptr >> 21) & 0x1ff; int pdpe_i = (va_ptr >> 30) & 0x1ff; int pml4e_i = (va_ptr >> 39) & 0x1ff; if(table->pml4e[pml4e_i].present) { if(table->pml4e[pml4e_i].base_ptr != (uintptr_t)&table->pdpe[pdpe_i] >> 12) goto error; if(table->pdpe[pdpe_i].present) { if(size == PAGE_SIZE_1G) { if(table->pdpe[pdpe_i].base_ptr == ((uintptr_t)pa_ptr >> 30 & 0x1ff)) return true; goto error; } if(table->pdpe[pdpe_i].base_ptr != (uintptr_t)&table->pde[pde_i] >> 12) goto error; if(table->pde[pde_i].present) { if(size == PAGE_SIZE_2M) { if(table->pde[pde_i].base_ptr == ((uintptr_t)pa_ptr >> 21 & 0x1ff)) return true; goto error; } if(table->pde[pde_i].base_ptr != (uintptr_t)&table->pte[pte_i] >> 12) goto error; if(table->pte[pte_i].present) { if(table->pte[pte_i].base_ptr != ((pa_ptr >> 12) & 0x1ff)) goto error; return true; } else goto mod_page_pte; } else goto mod_page_pde; } else goto mod_page_pdpe; } else { table->pml4e[pml4e_i].base_ptr = (uintptr_t)&table->pdpe[pdpe_i] >> 12; table->pdpe[pml4e_i].read_write = 1; table->pml4e[pml4e_i].present = 1; mod_page_pdpe: table->pdpe[pdpe_i].read_write = 1; //TODO you just found out things are a lot more simple then you thought! if(size == PAGE_SIZE_1G) { table->pdpe[pdpe_i].size = 1; table->pdpe[pdpe_i].base_ptr = pa_ptr >> 12; table->pdpe[pdpe_i].present = 1; return true; } table->pdpe[pdpe_i].base_ptr = (uintptr_t)&table->pde[pde_i] >> 12; table->pdpe[pdpe_i].present = 1; mod_page_pde: table->pde[pde_i].read_write = 1; if(size == PAGE_SIZE_2M) { table->pde[pde_i].size = 1; table->pde[pde_i].base_ptr = pa_ptr >> 12; table->pde[pde_i].present = 1; return true; } table->pde[pde_i].base_ptr = (uintptr_t)&table->pte[pte_i] >> 12; table->pde[pde_i].present = 1; mod_page_pte: table->pte[pte_i].base_ptr = pa_ptr >> 12; table->pte[pte_i].read_write = 1; table->pte[pte_i].present = 1; return true; } error: printf("Page allocation error!\n"); return false; }