AMD L

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 2:
System Programming

AdEHRTIRIRYSEE

© 2013 — 2020 Advanced Micro DevicesInc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectua property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD products are as set forth in a signed agreement between the parties or
in AMD Standard Terms and Conditions of Sale. Any unauthorized copying, ateration, distribution,
transmission, performance, display or other use of this materia is prohibited.

Trademarks

AMD, the AMD arrow logo, and combinations thereof, AMD Virtualization and 3DNow! are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

MMX isatrademark and Pentium is aregistered trademark of Intel Corporation.
HyperTransport is alicensed trademark of the HyperTransport Technology Consortium.

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Contents
GO Nt S . .o ii
UM S, . ot e XiX
TaADIES . o XXVii
REVISION HisStOrY . . oo e XXXi
P B A, . .. oo e xli
ADOUL ThiS BOOK. . . oottt e e e e e et et e e e e xli
AUIENCE. . . oo e xli
(@ 0= 0 .- (o xli
Conventionsand DefinitionNS it xlii
Notational CoNVENtioNSot e e xliii
DEfiNitioNS xliv
REgIS NS . .o I
Endian Order e e e liii
Related DOCUMENES.ottt et e e e e e e e e e e e e e liii
1 System-Programming OVErVIEWttt ettt 1
11 Memory MOGEl 1
MemOry AdAreSSINg.ot 2
Memory Organizalionou i e 3
Canonical Address FOrmo 4
12 Memory Managementot 5
SEOgMENTALION . . . o . ettt e 5
PagiNg . .o e 7
Mixing Segmentation and Pagingot 8
Real AdAresSINg. . ..o e e 10
13 Operaling MOGESo 11
LONg MOGE. 12
BA-Bit MOOE.ot e e e 13
Compatibility MOGE.o e 13
Legacy MOOES 14
System Management Mode (SMM) it e 15
14 Sy M REGI S S . . . oot 15
15 SysSteM-Data SITUCLUNES o e 17
16 I TUPS . . . 19
17 Additional System-Programming Facilities i 20
Hardware Multitaskingo e e 20
Machine CheCK e e 21
SOftWare DEDUGOING . . . o oottt e e e 21
Performance MONItOriNgt e e e 22
2 x86 and AMDG64 ArchitectureDifferences i 23
21 Operaling MOGESo 23
LONg MOOE. . . o 23

Contents

[AMD Public Use] .

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Legacy MOOE. 23
System-Management MOe.ttt e 24

2.2 Memory MOGEl 24
MemOry AdAreSSINg.ot e 24

Page Trangl ation.t e e 25
SEgMEN A ONottt e e 26

2.3 Protection Checks o 27
24 REgI S NS . .o 28
General-PUrposSe REgISIENS.ottt 28
YMM/XMM REQISIENS . oottt e e e e e e 28

Hags REgISIEr ... o e e e e e 28
INSLrUCtiON POINtEr e 28

StaCK POINtEr . . . 28

CONtrol REQISHENS. . . o ottt e e e e e 29

DEDUG REgI SIS, . . . o 29
Extended Feature Register (EFER)o 29
Memory Type Range Registers (MTRRS)o e e 29

Other Model-Specific RegistersS (MSRS) . . . oo it i e e e e 29

25 INSITUCHION SELo e 29
REX PrefiXeS. . oo 29
Segment-Override Prefixesin64-BitMode i 30
Operandsand RESUILSt e e e 30
Address Calculations.t e 30
Instructionsthat Reference RSP 31
BranChes o 32

NOP INSITUCHIONo e e e e e 34
Single-Byte INC and DEC INStrUCHIONS.o oot e e e e 34

MOV SXD INSIIUCHION . . . oo ettt e e e e e et e e e e 34

INvalid INSITUCHIONSo e e 34
Reassigned OPCOOESot 36
FXSAVE and FXRSTOR INSIIUCLIONS. oot 36

2.6 Interrupts and EXCEPLIONSot 36
Interrupt Descriptor Tableo e 37

Stack Frame PUSNES. 37

Stack SWItChING oo 37

IRET INSLIUCHIONot e e e e e e e et et 37
Task-Priority Register (CR8). oo 38

New EXception ConditionSot 38

2.7 Hardware Task SWitChingo e e et e 38
2.8 Long-Modevs. Legacy-Maode Differences. ... i 39
3 SYSLBIM RESOUICES. . . .t vttt et e e e e e e e e e e 41
31 System-Control REgISIErSo 41
CRO RIS . ..ottt e e e 42
CR2aNd CR3 REQISIENS. . ..ottt it e e e e e e e e e e e e 46

CRA RE S Y . . oottt e 47
Additional Control Registersin 64-Bit-Mode. i 51

CR8 (Task Priority Register, TPR)ot 52

iv

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

REL A GS REgI S Y . . oottt e e e e e 52

Extended Feature Enable Register (EFER) 56

Extended Control Registers (XCRN)ottt 59

3.2 Model-Specific Registers (MSRS) oo 59

System Configuration Register (SYSCFG)t 61

System-Linkage RegiSterS.ottt e 62

Memory-TypIiNg REGISIENS.ot e 63

Debug-EXteNSion RegISIErSottt 63

Performance-Monitoring REgISIErSo ot 64

Machine-CheCk REgISErSot e e e e e 64

Shadow Stack RegIStErS.o e 65

OthEr M SRS . . . oot 65

33 Processor Feature ldentification 66

4 Segmented Virtual Memoryo 69

4.1 Real Mode Segmentation. e e 69

4.2 Virtual-8086 Mode Segmentalion v it e 70

4.3 Protected Mode Segmented-Memory Models. 70

Multi-Segmented Model e 70

Flat-Memory Model. 71

Segmentation in64-BitMode e 71

4.4 Segmentation Data Structuresand Registers. 71

4.5 Segment Selectorsand RegIStErS.ottt 73

SEgMENt SElECIOrSttt 73

SEOMENt REG S B S . . oottt e 74

Segment Registersin 64-BitMode 76

4.6 DesCriptor Tables. . ..o e 77

Global Descriptor Table.o 77

Global Descriptor-Table Register e 78

Local Descriptor Table.o 79

Local Descriptor-Table Register oot e e e 80

Interrupt Descriptor Table oo e 82

Interrupt Descriptor-Table Register.o e e e e e 83

4.7 Legacy Segment DESCIiPLOrS. . . . oottt et e e e e 84

DesCriptor FOrMELot e e e e e e 84

Code-Segment DESCIIPIONS oottt e e e e e e e e e 86

Data-Segment DesCriplOrS. . ..ot 87

SYSEM DS I PLOrS .« . oottt et 89

GalE DESCIIPIOrS . v ittt e 20

4.8 Long-Mode Segment DEsCriptorso oottt e 92

Code-Segment DESCIIPIOrSottt et e e e e e 92

Data-Segment DeSCIiPIOrS. . . . oottt e e e e e e e 93

SYSEM DS PLOrS .« . o ittt et e e%!

GalE DS PIONS .« o vttt e 96

Long Mode DesCriptor SUMMaIYottt et e et e e et 98

4.9 Segment-ProteCtion OVEIVIEW.ot e e 99

Privilege-Level ConCeptt e 100

Privilege-Level TYPeSo 100
Contents

[AMD Public Use] '

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
410 Data-AccessPrivilege Checks. o 101
ACCESSING Dala SEgMENTS ot ittt 101
ACCESSING STACK SEgMENES oo e 102
411 Control-Transfer Privilege Checks i e 104
Direct Control Transferso 104
Control TransfersThrough Call Gates. e 108
Return Control Transfers. 115
412 Limit CheCKS . . ottt e 116
Determining LImit Violationsot 116
DataLimit Checksin64-bitMode 118
413 TYPE CNECKS . ..ottt e 118
Type Checks in Legacy and Compatibility Modes, 118
Long Mode Type Check Differences. e 119
5 Page Trandlation and Protection 121
51 Page Trandalion OVerViewWt e e e e e e e e e 122
Page-Translation OPtioNSttt e 124
Page-Trandlation Enable (PG) Bit. ... e 124
Physical-Address Extensions (PAE) Bito 125
Page-Size EXtensions (PSE) Bit o e 125
Page-Directory Page Size (PS) Bito e e e e 126
52 Legacy-Mode Page Tranglation.ot 126
CRB RE S Y . . oottt 127
Normal (NON-PAE) Paging oo e 128
PAE Paging 130
5.3 Long-Mode Page Tranglationttt e e 134
Canonical Address FOrmo 134
CR o 134
4-KbytePage Translation 135
2-Mbyte Page Translation 138
1-GbhytePage Trandation e e e 140
54 Page-Trandation-Table Entry Fields. i i 143
Field DEfiNitioNSo 143
Noteson Accessed and Dirty BitS.o 146
55 Trandation-Lookaside Buffer (TLB) ..o e 147
Process Context Identifier i 147
Global Pages oo e 148
TLB ManagemEnt . ..ot e e 148
5.6 Page-Protection CheCKS. oo e e e 151
User/Supervisor (U/S) Bit 152
Read/Write (RIW) Bit e e e 152
NO Execute (NX) Bit. . ..ot e e e 152
Write Protect (CROWP) Bit e 152
Supervisor-Mode Execution Prevention (CRASMEP)Bit.......................... 153
Memory Protection Keys(MPK) Bit. i e e 153
57 Shadow Stack Protection. e 154
Shadow SEaCK ACCESSES. . . . o ottt e 154
Shadow Stack Pages 154

Vi

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Shadow Stack Protection Checks 154

5.8 Protection AcrossPaging Hierarchy i 155
Accessto User Pageswhen CROWP=1 oo 157

59 Effectsof Segment Protection. i 157
6 SYStEM INSIFUCHIONS . . o .ot e 159
6.1 Fast System Call and REtUINo 162
SYSCALL and SY SRET . . .o 163
SYSENTER and SYSEXIT (Legacy Mode Only)t 165
SWAPGS INSIIUCLIONot e e 165

6.2 System Statusand Control. o 166
Processor Feature Identification (CPUID).t i 166
Accessing Control RegISIErSot 166
Accessingthe RFLAGS RegiSterot e e e e 167
Accessing Debug RegIStErS. . .. oot 167
Accessing Model-SpeCifiC RegIStErS. oo 167

6.3 Segment Register and Descriptor Register ACCESSo i it 168
ACCESSING Segment REgISIENS oottt e 168
Accessing Segment Register HiddenStateo o 168
Accessing Descriptor-Table Registers.o e 168

6.4 Protection CheCKing. oot e e 169
Checking ACCESS RIGNES . . . oot 169
Checking Segment LimitS. 169
Checking Read/Write RIghES.ot e 169
Adjusting Access Rights o 169

6.5 Processor Halto 170
6.6 Cacheand TLB Management ittt ettt et et et 170
Cache Management o e 170

TLB Invalidation o e 171

6.7 Shadow Stack Management.t 171
7 M EMOrY Sy S OIM . . 173
7.1 Single-Processor Memory AccessOrderingov v e 176
REA0 Orderingottt e e e 176

WHtE Ordering. . . oo 177
Read/Write Barmiers. . ..o 178

7.2 Multiprocessor Memory ACCeSS Ordering.o vttt e e 178
7.3 Memory Coherency and ProtoColot 181
Special Coherency ConSIderationsttt e 183

ACCESS ATOMICITY . . o . ettt e e e e e e e e e e e e 184

A e e e Memory Typesl84
Instruction Fetching from UncacheableMemory 186
Memory Barrier InteractionwithMemory Types. 187

7.5 Buffering and Combining Memory Writes.t 189
WHte BUfEINGo e 189

Wt COMDINING ettt e e e e e e e e e 190

7.6 MEmMOrY Cathes. . . .ot e 191
Cache Organization and Operationttt et 191
Contents Vii

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Cache Control MeChanisms.o e e e 194
Cache and Memory Management Instructions 197
Seriaizing INSIUCHIONS oo e e e 198
Cache and Processor TOPOIOGgY . . .o v vttt e e et e 199
7.7 Memory-Type Range Registers.o e e e 200
MTRRTYPEFIEdS e e e 200
M RRS .ttt 201
USING M T RRS . . oo e e e e 207
MTRRs and Page Cache CONtrolS.ot 208
MTRRsin Multi-Processing ENVIironments, 210
7.8 Page-Attribute Table Mechanism i e 210
PAT REG S O . .ottt 210
PAT INAEXING . . . oo et e 211
[dentifying PAT SUPPOITottt e e e e 212
P T A CCESSES . . ottt it e e e 212
Combined Effect of MTRRSaNd PATo e 213
PATsin Multi-Processing ENVIironments.t e e 214
Changing Memory TP . ..ottt e e e e et e e e 214
79 Memory-Mapped 1/0. 214
Extended Fixed-Range MTRR Type-Field Encodings 215
LORIRS . . it 216
IORR OVErlapping. . . .o e e 218
TOP Of MEMIOTY . ..ot e e e e e e 218
7.10 Secure Memory ENCryplion.ot e 220
Determining Support for Secure Memory Encryption ..., 220
Enabling Memory Encryption EXtENSIONS.o ot 221
Supported Operating MOdeSo 221
Page Table SUPPOIto e 221
/O A CCESSES. . . ot ettt e 222
RESIICHONS . . . oo 222
SMM INtEraCtiono e 223
ENnCrypt-in-Place 223
8 Exceptionsand [Nterrupts.ot 225
8.1 General CharaCteristiCs oot e 225
PrECISION .t 225
INSEUCHION RESLAIT o oot e e e e e 226
TYPES Of EXCEPLIONS.ottt e e 226
Masking External Interrupts o 227
Masking Floating-Point and Medialnstructions. oo, 227
Disabling EXCEPLIONS.ot 228
8.2 M BCIONS. . et e 228
#DE—Divide-by-Zero-Error Exception (Vector 0).t 231
#DB—Debug Exception (VECtOr 1).ottt 231
NMI—Non-Maskable-Interrupt Exception (Vector 2), 232
#BP—Breakpoint Exception (VeCtor 3) 232
H#OF—Overflow Exception (VECIOr 4). oot e 233
#BR—Bound-Range Exception (Vector 5)o 233

viii

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
#UD—Invalid-Opcode Exception (Vector 6) 233
#NM—Device-Not-Available Exception (VECtOr 7) oo 234
#DF—Double-Fault Exception (Vector 8).o 234
Coprocessor-Segment-Overrun Exception (Vector 9)t 235
#TS—Invalid-TSS Exception (Vector 10).o e e 236
#NP—Segment-Not-Present Exception (Vector 11), 237
#SS—Stack Exception (Vector 12)ot 237
#GP—General-Protection Exception (VeCtor 13)o 238
#PF—Page-Fault Exception (Vector 14)ot 239
#MF—x87 Floating-Point Exception-Pending (Vector 16). 240
#AC—Alignment-Check Exception (Vector 17).o 241
#MC—Machine-Check Exception (Vector 18) 242
#XF—SIMD Floating-Point Exception (Vector 19) 243
#CP—Control-Protection Exception (VeCtor 21)t 243
#HV—Hypervisor Injection Exception (Vector 28) ..., 244
#VC—VMM Communication Exception (Vector29)., 244
#SX—Security Exception (Vector 30). oo vt it e 244
User-Defined Interrupts (Vectors 32-255) ... 244

8.3 ExceptionsDuringaTask Switch 245
84 ErrOr COOES . . ottt e 245
SElECtOr-Error CoOe. . ..ot 245
Page-Fault Error Code.ot 246
Control-Protection Error Code 247

85 Pr O tiES. 247
Floating-Point EXception Priorities. e 249
External Interrupt Priorities. 250

8.6 Real-Mode Interrupt Control Transfers. i s 251
8.7 Legacy Protected-Mode Interrupt Control Transfers, 253
LocatingtheInterrupt Handler i i, 254
Interrupt TO Same Privilege.o 255
Interrupt TOHigher Privilege. e 256
Privilege CheCKso 257
Returning From Interrupt Procedurest 260
Shadow Stack Support for Interruptsand Exceptions., 260

8.8 Virtual-8086 Maode Interrupt Control Transfers 261
Protected-Mode Handler Control Transfer 262
Virtual-8086 Handler Control Transfer e 263

8.9 Long-Mode Interrupt Control Transfers i e 264
Interrupt Gates and Trap GaleSot i et e e e e 264
LocatingthelInterrupt Handler i e 264
Interrupt Stack Frame e e 265
Interrupt-Stack Table. 268
Returning From Interrupt Proceduresot 270

8.10 Virtual INtermUPLS . . . oottt e e 271
Virtual-8086 MOde EXLENSIONSottt e e 271
Protected Mode Virtual Interrupts. 274

Effect of Instructionsthat Modify EFLAGS.IF. i 274
Contents IX

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
9 Machine Check Architecture e 279
91 INtrOdUCHION . . . oo 279
Reliability, Availability, and Serviceability i 279
Error Detection, Logging, and Reporting 280
EIrOr RECOVETY. . . o 282
9.2 Determining Machine-Check Architecture Support oo 283
9.3 Machine Check Architecture MSRS oo e 283
Global Statusand Control Registers e 284
Error-Reporting Register Banks i e 287
94 Initializing the Machine-Check Mechanism 295
9.5 USINGMCA FEAIUIES. . . . oo ittt et e e e e e e e e e e 296
Determining the Scope of Detected Errors 297
Handling Machine Check EXCEpLioNS.ottt e 297
Reporting CorreCcted Errorsot 299
10 System-Management MOde.ottt 301
10.1 SMM DIfferenCes . ..o vt 301
10.2 SMM RESOUICES. ittt e e e e e e e e e e e e e e 302
O M R A L 302
SMBASE REGIS Not 303
SMRAM Stale-SaVE ANa . . . o ottt e 304
SMM-Revision ldentifier. 308
SMRAM ProteCted ArEasottt e e e e e e e 309
10.3 USING SMM ..o 311
System-Management Interrupt (SMI)o 31
SMM Operating-Environment. 311
Exceptions and INEITUPLSottt e e 312
Invalidatingthe Caches e e e 313
Saving Additional Processor State.o 313
Operating in Protected ModeandLongMode i, 314
AUtO-Halt ReStart. . . . oo 314
O Instruction Restarto 315
104 Leaving SMM ... 316
10.5 Multiprocessor Considerationsovi it e 317
11 SSE, MM X, and X87 Programmingvuunu ettt e eneeeeaens 319
11.1 Overview of System-Software Considerationst 319
11.2 Determining Mediaand x87 Feature SUppOrt oot 319
11.3 Enabling SSE INStrUCtioNS.ot 321
Enabling Legacy SSE Instruction Execution.o, 321
Enabling Extended SSE Instruction EXecution. 321
SIMD Floating-Point ExceptionHandling i 322
114 Mediaand X87 ProCessor Staleo v vttt e e 322
SSE Execution Unit State oot 322
MMX Execution Unit State.ot 323
X87 Execution Unit State.o 324
Saving Mediaand x87 ExecutionUnit State. 326
115 XSAVE/XRSTOR INSIIUCLIONS. . . . oottt et e e e e 333
X

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

CPUID ENhanCements.ottt e et et e 333

XFEATURE ENABLED MASK. ... e e e e e e 333

EXtended SaVE ATEA. . . . ottt 334

INSErUCtiON FUNCLIONS. oo e e e e e 335

YMM States and Supported OperatingModest 335

Extended SSE Execution StateManagement i 335

Saving ProCcessor SEate.ot 337

ReSIONNG ProCessor Staeot e e 337

MXCSR State Management 337

Mode-Specific XSAVE/XRSTOR State Management., 338

12 Task Management 345

12.1 Hardware Multitasking OVErVIEWot 345

122 Task-Management RESOUICES oottt e ettt et 346

TSS S OCIOr . .ot 348

LIRSS 3 L=< o (o 348

Task REgI So e 349

Legacy Task-State Segment.ot 351

64-Bit Task State Segment. oot 355

Task Gate Descriptor (Legacy Mode Only). e 358

12.3 Hardware Task-ManagementinLegacy Mode. i, 358

Task Memory-Mapping« .oe et 358

SWItChiNg Tasks. o 359

Task SwitchesUSINg Task Gates. oot e e 364

NESHING TaSKS. .« . v ottt ettt e e e e e e 366

13 Software Debug and PerformanCce RESOUICES.o ittt 369

131 Software-Debug RESOUICESottt e e e e e e 370

DEbUg REGI SIS, . . .ot 370

Setting BreakpoiNtSot 377

UsSiNg Breakpointst e e 379

SINGIE SEEPPING .« v e ettt 382

Breakpoint Instruction (INT3) e 382

Control-Transfer Breakpoint Features.t e 382

Debug Breakpoint Address Masking.o v it e 384

13.2 Performance Monitoring CouNtersiu ittt 384

Performance Counter MSRS 385

Detecting Hardware Support for PerformanceCounters. oo, 391

Using Performance COUNLEN'S.ottt e e e 391

TIMe-SamMP COUNTESottt e e 391

13.3 Instruction-Based Sampling.ot e 393

IBSFetch Sampling.o e 393

IBSFetch Sampling Registers. o e e e e e 394

IBSEXECUtion SampPling oottt e 397

IBS Execution Sampling RegIStErSot e 398

13.4 Lightweight Profiling. o 406

OV IV BN . . o ettt e e e e e 406

Eventsand EVent RECOIAS.ottt 410
Contents

[AMD Public Use] .

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Detecting L VP, . . . 419
L VW P REgI S O S . . o oottt 423
LW INStrUCHIONS oottt e e e e e e e e 425
LWP Control BIOCKot e e e 429
XSAVE/XRSTOR . .t e e e 439
Implementation NOtESot e e e e e e e 443
14 Processor Initialization and Long Mode Activation. 449
141 Processor Initialization e 449
Built-In Self Test (BIST) . ..ot 449
Clock Multiplier SElection. e 450
Processor Initidization State.t 450
Multiple Processor Initialization 452
Fetchingthe First InStruction. e e 452
142 Hardware Configurationt e e e e e e e e 453
Processor Implementation Information. i e 453
Enabling Internal Caches. 453
Initializing Mediaand X87 Processor State.ovv i 453
Model-Specific Initiaization. e 455
14.3 InitidizingReal MoOde. e e 456
14.4 Initidizing Protected Mode. e e 456
145 Initidizing LONg MOdEo 457
146 Enabling and ActivatingLongMode 458
ActivatingLong Mode. o e 459
ConsistenCy ChecKS.ot e 460
Updating System Descriptor TableReferences. i, 460
Relocating Page-Trandation Tables.o e e 461
147 LeavingLongMode oo 461
148 Long-Modelnitidization Example. 461
15 SecureVirtual Maching. 467
151 TheVirtua MachineMonitor 467
152 SVM Hardware OVEIVIBWottt e e e e e e et 467
Virtualization SUPPOIT oot e e 467
GUESE MOOE . . . e 468
External ACCESS ProteCtionottt 468
NI UL SUPPOIt . . .o e 468
Restartable INStruCtionsSo 468
SECUNTY SUPPOIT . . .o e e 469
15.3 SVM Processor and Platform EXteNSiONSo oo 469
154 ENnabling SVM ... 469
155 VMRUN INSIUCHION & . ottt e e e e e e et e e e e 470
BasSiC OperalioN . . .ot 470
VMSAVE and VMLOAD INStrUCtiONS oottt et e e 475
15,6 HVMEXIT Lo 476
15.7 INtercept OPerationttt e e e e a77
State Saved ON EXIto 477
Intercepts During IDT Interrupt Delivery e 478

Xii

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
EXITINTINFOPsSeUdo-Codeo ittt 479

15.8 DECOOE ASSISIS. . vttt ettt 480
MOV CRX/DRX INTErCEPLS . . .ottt e e e e e e e 480

INT N I S . . o ottt e e e 481
INVLPG and INVLPGA INterCepts.ottt et 481

Nested and intercepted #PF e e 481

159 INStrUCtioN INtErCEPLS. ottt 482
1520 TOIO INtErCEDS . . o . ottt et e e e e e 4385
/O PermMiSSIONS Map oottt e e e e e e e 485

IN and OUT BEhaViorottt e e e e e e e e e 486

(REP) OUT S and INS . ..o e e e e e e 486

1511 MSOR I OIS . . oottt e e 487
1512 EXCEPLION INTEICEPLS . . o .ot ittt e et e e e 488
HDE (DiVide BY ZE0) oottt 488

HDB (DEDUG) oo 488

VeCtor 2 (RESEIVE)o 489

H#BP (Breakpoint) oo vt 489

HOF (OVEIfIOW) . . oo e 489

H#BR (BOUNG-RANGE) oo e 489

HUD (INvalid OPCOOE) oo e et e e e e e e e 489

#NM (Device-Not-Available) 489

H#DF (Double Fault)o 489

VeCtor O (RESEIVED)ot 489
HTS(INVAIA TSS) . ..ot e e 490

#NP (Segment NOt PreSent)o oot e e 490

#HSS (Stack Fault)o 490

H#GP (General ProteCtion).ot 490

HPE (Page Fault)o 490

H#ME (X87 Floating PoINt)o 490

H#AC (AlIgNment Check) oo e 490

H#MC (Machine Check)o e 490

#XF (SIMD Floating Point).o e 491

15.13 INterrUPt INterCEPtS. . o ot ettt e 491
INT R IO CEt. . .. ottt e e e e e e 491

NI eI CEOto e e e e 491

SMI INEEICEPto 491

INIT INterCEpto e 492

Virtual Interrupt INtercepto 492

15.14 Miscellaneous INterCEPtS oottt e 492
Task SWItCh INterCapt.o 493

Ferr Freeze Intercept. oo e e 493
Shutdown INtErCEPLo 493

Pause Intercept Filteringot e 493

1515 VMCB StAe CaChing oottt e e et e e e e e e 494
VMCB Clean BitSot e e e 494
Guidelinesfor ClearingVMCB CleanBits. oo i 495
VMCB Clean Field e e e e 495

Contents

[AMD Public Use] i

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
1516 TLB CONtrol.ottt e e e e e e e e e e e 497
TLB FUSN . .o 497
Invalidate Page, Alternate ASIDot 498

15.17 Globa Interrupt Flag, STGl and CLGI Instructions.coviiiiin... 498
1518 VMMCALL INSITUCION. . . oottt e e e e e e e e e e 499
1519 Paged Real MOdE.ot 499
1520 Event INJECHION.ot 500
1521 Interrupt and Local APIC SUPPOIT.ottt 501
Physical (INTR) Interrupt Maskingin EFLAGS. i 501
VirtualiZiNg APIC. TPR 502
TPRACCESSIN32-BitMoOde 502
Injecting Virtual (INTR) Interrupts e e 502
Interrupt Shadows o 503

Virtual Interrupt INtercepto 503
Interrupt MaskinginLocal APIC 504

INET QU0 .« e e e e 504

NI SUPPOIT . . e e 505

1522 SMM SUPPOI © ot ottt et e e e e e e 505
SOUICES Of SMI . .o e 505
ReSPONSEIO SMI . . oo 505
Containerizing Platform SMM 506

15.23 Last Branch Record Virtualizationt 507
Hardware Acceleration for LBR Virtualization. 507

LBR Virtualization CPUID Feature Detection i, 508

15.24 External ACCESSProteCtion ot 508
DeviceIDsand Protection DOMaiNSo vttt et i 508

Device Exclusion Vector (DEV) e e e 508

ACCESS ChecKing oo 509

DEV Capability BIOCKot e 510

DEV Register ACCESSMEChaniSM oo 511

DEV Control and StatUS ReQISIES. oot 512
Unauthorized ACCESS LOGOING. .« . o v v vttt e e ettt e 514

Secure Initialization SUPPOIto 514

1525 NeSted Pagingo oottt e e 514
Traditional PagingversusNestedPaging it 514
Replicated State. oo e 516
Enabling Nested Paging. oo 517

Nested Paging and VMRUN/AVMEXI To 517

Nested TableWalKo 517

Nested versus Guest Page Faults, Fault Orderingco i, 518
Combining Nested and Guest Attributes. i i 519
Combining Memory Types, MTRRS.t e 520

Page SpPIINtEring.o e 521

Legacy PAEMOOE. o 522

A20 MASKING -« v ettt et e e e e e 522
Detecting Nested Paging SUPPOITottt 522

Guest Mode Execute Trap EXEENSIONottt e e e e 522

Xiv

[AMD Public USG] Contents

AMDA

24593—Rev

15.26
15.27

15.28
15.29

15.30

1531

15.32

15.33

15.34

. 3.36—O0ctober 2020

Supervisor Shadow Stacks
SECUNY « . ove e
Secure Startup with SKINIT
SecurelLoader
SecureLoaderimage....................
SecureLoaderBlock
Trusted Platform Module
System Interface, Memory Controller and 1/0O Hub Logic
SKINIT Operation.ccovvn...
SLAbDOrt. ...
Secure Multiprocessor Initialization
Security Exception (#SX)
Advanced Virtua Interrupt Controller
Introduction...........................
Local APIC Register Virtualization
AVICBackingPage.....................
VMCB Changesin Support of AVIC
AVIC Memory Data Structures
Interrupt Delivery
CPUID Feature Bitsfor AVIC
New Processor Mechanisms
New Exit Codesfor AVIC
SYMRelatedMSRS
VM_CR MSR (C001_0114h)
IGNNE MSR (C001_0115h)

SMM_CTL MSR (C001_0116h)
VM_HSAVE_PA MSR (C001_0117h)
TSC Ratio MSR (C000_0104h)
SVM-Lock....... ...
SVM_KEY MSR (C001_0118h)
SMM-Lock
SmmLock Bit — HWCRJ[O]
SMM_KEY MSR (C001_0119h)
Nested Virtualization.
VMSAVE and VMLOAD Virtuaization
Virtuadl GIF(VGIF)t
Secure Encrypted Virtualization
Determining Support for SEV
Key Management.
EnablingSEV
Supported Operating Modes
SEV Encryption Behavior
Page TableSupport
Restrictionso,
SEV Interaction with SME
PageFlushMSR
SEV_STATUSMSR

AMDG64 Technology

Contents

[AMD Public Use]

XV

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Virtual Trangparent Encryption (VTE)o 562
15.35 Encrypted State (SEV-ES).o 562
Determining Support for SEV-ES 563
Enabling SEV-ES. 563
SEV-ES OVEIVIBWottt e e e e e e e e e e 563
TYPES Of EXITS . oottt e 564
HV C EXCEPLION. . . oottt et et e e e e e 565
VIMGEXIT . oot 567
GH OB . .. 567
VM RUN o 567
AUIOMELIC EXITS. . ..o 568
Control Register Wt TrapS. . .. ot vttt ettt e ettt et e e 568
1536 SecureNested Paging (SEV-SNP)o 569
Determining Support for SEV-SNP. 569
Enabling SEV-SNP 570
Reverse Map Table o 570
Initidizingthe RMP. e 571
Hypervisor RMPManagementttt 572
PageValidation e 573
Virtual Machine PrivilegeLevels 573
Virtual Top-Of-MemOrYo e e 574
REIECt VY C . o 574
RMPand VMPL AccessChecks. 575
Large Page Managemento oottt 577
Running SNP-Active Virtual Machines. o e 578
DEDUG REgI SIS, . . . oo 580
M B0 Y Y PES. ettt e e 580
T LB MaANagEMEN . .t e 580
Interrupt INjection ReSLICHONSot e 581
Side-Channel Protectiono 582
16 Advanced Programmable Interrupt Controller (APIC) 583
16.1 Sourcesof InterruptstotheLocal APIC 584
16.2 Interrupt CONtrol o 585
16.3 LoCal APIC .. 585
Local APICENaDIe oo 585
APIC REgISIES . . ottt 586
LoCal APIC 1D . e 587
APICVErSION REgISIEr. . ..ot 588
Extended APIC Feature RegiSter. oo oot 589
Extended APIC Control Register. e 589
16.4 LOCaA INEITUPLS . . . o\ ottt et e et e e e e e e e e e e e 590
APIC Timer INterTUDL. . . .ottt e e e 592
Local Interrupts LINTO and LINT L. . ..o et e 594
Performance Monitor Counter Interrupts e e 594
Thermal Sensor INtErTUPLS e 595
EXtended INterruptso o 595
APIC EImOr INtermUPLS . . . oo e 595

XVi

[AMD Public USG] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

SPUMOUS INEEITUDES. .« . o . oottt e e e e e e e e e 597

16.5 Interprocessor INterruptS (IP1)ot 597

16.6 Loca APIC Handling Of INtermuptS.ot e 601

Receiving Systemand IPL Interrupts.o 601

Lowest Priority Messagesand Arbitration i 602

Accepting Systemand [Pl Interrupts.o oot 603

Selecting and Handling Interrupts.o 606

16.7 SVM Support for InterruptsandtheLocal APICo 608

Specific End of Interrupt REQIStErot 609

Interrupt Enable Register.o e e 609

17 Hardwar e Performance Monitoringand Control 611

171 P-State Control.o e 611

17.2 CorePerformance BOOStottt 613

17.3 Determining Processor EffectiveFrequency. i i 614

Actual Performance Frequency Clock Count (APERF) 615

Maximum Performance Freguency Clock Count (MPERF) 615

MPERF Read-only (MperfReadOnly). e 616

17.4 Processor Feedback Interface 616

175 Processor Core POWer REPOIING.ottt et et 616

Processor FaCilities o 616

Software Algorithm 617

18 Shadow StaCKSo 619

181 Shadow Stack OVEIVIEWo e e 619

Detecting and Enabling Shadow Stack Support i 619

18.2 TheShadow Stack Pointer. e 620

18.3 Shadow Stack Operation for CALL (near)and RET (near)coovvnn... 620

184 Shadow Stack Operationfor Far Transfers. it 620

185 Far Transfer tothe SamePrivilegeLevel i i 621

18.6 Far Transfer to Different PrivilegeLevel i 621

Shadow Stack Switching 621

Handling CS, LIPand SSPon Privilege Transistions 623

Supervisor Shadow Stack TOKENo 623

Shadow Stack Token Validation for Inter-privilege CALL (far) and Interrupts/Exceptions. 624

Shadow Stack Token Validation for Inter-privilege RETand IRET 625

18.7 Shadow Stack Operationfor SYSCALL andSYSRET coo.... 625

18.8 Shadow Stack Operationfor Task Switches i 626

189 Restricting Speculative Executionof RET targets, 627

18.10 Shadow Stack SwitchingUSINngRSTORSSP 627

18.11 Shadow Stack Management INStructions.ttt 630

1812 Shadow StaCk M SRSottt 631

18.13 XSAVE/ X RSTOR . . . ittt e e e e 632

Appendix A MSR Cross-REferenCe.o e e e 633

Al MSRCross-Referenceby MSRAArESS.o 633

A2 SysStEmM-SOftWarE M SRS, . . oo e 637

A3 Memory-TYpiNg MSRSo 638

A4 Machine-Check MSRS.o 641
Contents

[AMD Public Use] i

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
A5 Software-Debug MSRSo 642
A6 Peformance-Monitoring MSRS 643
A7 Secure Virtual Machine M SRSo e e 644
A8 System Management MOdeEMSRS i e 646
A9 CPUID NameMSR Cross-ReferenCeot e e 646
A.10 Shadow StaCk M SRS 646
Appendix B Layout of VMCB 649
Appendix C SVM Intercept EXit COdeSot 663
Appendix D SMM Containerizationiuui et 667
D.1 SMM Containerization Pseudocode 667
Appendix E OS-VisibleWorkarounds i 673
E.l Erratum ProCeSS OVEIVIEWottt ettt et et e e 675
I X o 677
XVviii

[AMD Public Use] Contents

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Figures

Figure1-1. Segmented-Memory MOdEl e 6
Figure1-2. Flat Memory Model e 7
Figure1-3. Paged Memory MOdel. i 8
Figure1-4. 64-Bit Flat, Paged-Memory Model. i e e 9
Figure1-5. Rea-AddressMemory Model. i e 10
Figure1-6. Operating Modes of the AMD®64 Architecture. 12
Figure 1-7. SyStem REgISIEIS. . . . oottt e e e e e 16
Figure 1-8. System-Data SITUCIUIES. oottt e e e e 18
Figure3-1. Control Register O (CRO)ottt e e e e e e 43
Figure 3-2. Control Register 2 (CR2)—Legacy-Mode e e e e 46
Figure 3-3. Control Register 2 (CR2)—LongMode.o e e e e 46
Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging. 46
Figure3-5. Control Register 3 (CR3)—Legacy-Mode PAEPaging.t 46
Figure3-6. Control Register 3 (CR3)—LoNgMode.t e 47
Figure 3-7. RFLAGS REQISEot e e e e e e e 53
Figure 3-8. Extended Feature Enable Register (EFER). i i 57
Figure 3-9. AMDG64 Architecture Modd-Specific Registers. e 60
Figure 3-10. System-Configuration Register (SYSCFG)t e e e e 61
Figure 3-11. XSS REgI SO ottt ettt e e e e e 66
Figure4-1. Segmentation Data SITUCLUIES.ttt e e e 72
Figure4-2. Segment and Descriptor-Table Registers.o 73
Figure4-3. Segment SElECtOr.ot e 73
Figured-4. Segment-Register FOrMatottt i e et i e ettt e e 75
Figure4-5. FSand GS Segment-Register Format—64-BitMode.o .. 76
Figure4-6. Global and Local Descriptor-Table@ ACCESSo it e 78
Figure4-7. GDTRand IDTR Format—Legacy MOdESt i 79
Figure4-8. GDTRand IDTR Formati—LongMode. e 79
Figure4-9. Relationshipbetweenthe LDT and GDTttt e e 80
Figure4-10. LDTRFormat—Legacy Mode. i i i e e e e e e e 81
Figure4-11. LDTRFormat—Long MoOde.o i e e e e e e et e 81
Figure4-12. Indexing an I T e 83

Figures Xix

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Figure4-13. Generic Segment Descriptor—Legacy Mode. 84
Figure4-14. Code-Segment Descriptor—Legacy Mode.ot 86
Figure4-15. Data-Segment Descriptor—Legacy Modeo 87
Figure 4-16. LDT and TSS Descriptor—L egacy/Compatibility Modes. 20
Figure4-17. Cal-Gate Descriptor—Legacy Mode. i e e e e et e 91
Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode it 91
Figure 4-19. Task-Gate Descriptor—Legacy Mode 91
Figure4-20. Code-Segment Descriptor—LongModeo 92
Figure4-21. Data-Segment Descriptor—Long Mode.o 93
Figure 4-22. System-Segment Descriptor—64-BitMode. i 95
Figure 4-23. Call-Gate Descriptor—LongMode oo e 96
Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—LongMode.o ... 97
Figure 4-25. Privilege-Level RElaionships. 100
Figure4-26. Data-Access Privilege-Check Examples. 102
Figure4-27. Stack-AccessPrivilege-CheCk EXamples.o 103
Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. 106
Figure 4-29. Conforming Code-Segment Privilege-Check Examples. 107
Figure4-30. Legacy-Mode Call-Gate Transfer Mechanism. i, 108
Figure4-31. Long-Mode Call-Gate AccessMechanism. it 109
Figure4-32. Privilege-Check Examplesfor Call Gatest 111
Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters. oL, 113
Figure4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode. 113
Figure 4-35. Stack Switch—LongMode. i e e e 114
Figure5-1. Virtual to Physical Address Trandation—LongMode.o, 123
Figure5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode. 127
Figure5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode., 127
Figure5-4. 4-Kbyte Non-PAE Page Trandation—Legacy Mode. 128
Figure5-5. 4-Kbyte PDE—Non-PAE PagingLegacy-Mode 129
Figure5-6. 4-Kbyte PTE—Non-PAE PagingLegacy-Mode 129
Figure5-7. 4-Mbyte Page Trandation—Non-PAE Paging Legacy-Mode. 130
Figure5-8. 4-Mbyte PDE—Non-PAE PagingLegacy-Mode. i ... 130
Figure5-9. 4-Kbyte PAE Page Translation—Legacy Mode., 131
Figure5-10. 4-Kbyte PDPE—PAE PagingLegacy-Mode 132
XX Figures

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Figure5-11. 4-Kbyte PDE—PAE PagingLegacy-Mode 132
Figure5-12. 4-Kbyte PTE—PAE PagingLegacy-Mode 132
Figure5-13. 2-Mbyte PAE Page Trandation—Legacy Mode, 133
Figure5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode. i 133
Figure5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode. i 134
Figure5-16. Control Register 3 (CR3)—LongMode. e e 135
Figure5-17. 4-Kbyte Page Trandation—LongMode. i 136
Figure5-18. 4-Kbyte PMLAE—LongMoOde. i 137
Figure5-19. 4-Kbyte PDPE—LONGMOOEot e 137
Figure5-20. 4-Kbyte PDE—LoOngMode i e e e e 137
Figure5-21. 4-Kbyte PTE—LongMode. i e et e 138
Figure5-22. 2-Mbyte Page Trandlation—LongMode i e 139
Figure5-23. 2-Mbyte PMLAE—LongMode i e e et e 140
Figure5-24. 2-Mbyte PDPE—LONGMOE. i e 140
Figure5-25. 2-Mbyte PDE—LONGMOQEot e e 140
Figure5-26. 1-Gbyte Page Trandation—LongMode.o 141
Figure5-27. 1-Gbyte PMLAE—LoNngMoOde. i e e e e 142
Figure5-28. 1-Ghyte PDPE—LongMode i e et e 142
Figure 5-29. PKRU REQISErot ittt e e e et et et et et et et et et et 153
Figure6-1. STAR,LSTAR,CSTAR, andMASK MSRS. e 164
Figure6-2. SYSENTER _CS, SYSENTER ESP, SYSENTER EIPMSRs. 165
Figure 7-1. Processor and Memory SYyStem.ttt 174
Figure7-2. MOES] State Transitions oot e et et et e 182
Figure 7-3. CacheOrganization EXample. e e e e e e e e 192
Figure 7-4. MTRR Mapping of Physical MeMOrYttt e e ae s 202
Figure 7-5. Fixed-Range MTRR 203
Figure7-6. MTRRphySBasen Register o e 205
Figure7-7. MTRRphysSMaskn RegiSter.o e 205
Figure7-8. MTRRdefTypeRegister Format. e 207
Figure 7-9. MTRR Capability Register Format.t e e e e e e 208
Figure 7-10. PAT REQISIEr. . .. oo e et et et et e et e e e 210
Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRS) 215
Figure 7-12. IORRBASEN REGISEY oottt e e e e e e e e 217

Figures XXi

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Figure 7-13. IORRMaskn Register o e e 218
Figure 7-14. Memory Organization Using Top-of-Memory Registers.t 219
Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2). 220
Figure 7-16. ENCrypted MemOry ACCESSES vttt e et ettt e et ettt et 222
Figure8-1. Control Register 2 (CR2)ottt e e et et et ettt e 240
Figure8-2. Selector Error Code.ot e 245
Figure8-3. Page-Fault Error Codet e e 246
Figure8-4. Control-Protection Error Codeot 247
Figure8-5. Task Priority Register (CR8)ot e 250
Figure8-6. Rea-ModelInterrupt Control Transfer i i 252
Figure8-7. Stack AfterInterruptinReal Mode. i 253
Figure8-8. Protected-Mode Interrupt Control Transferc i, 255
Figure 8-9. Stack After Interrupt to Same PrivilegeLevel 256
Figure 8-10. Stack After Interrupt to Higher Privilege 257
Figure8-11. Privilege-Check Examplesfor Interrupts. e 259
Figure 8-12. Stack After Virtual-8086 Mode Interrupt to ProtectedMode. 263
Figure 8-13. Long-Mode Interrupt Control Transfer. i e 265
Figure 8-14. Long-Mode Stack After Interrupt—Same Privilege.o i 267
Figure 8-15. Long-Mode Stack After Interrupt—Higher Privilege.o L. 268
Figure8-16. Long-Mode ST Mechanism. e 269
Figure 9-1. MCG _CAP REgIS Nttt e e e e e e e e e e 284
Figure 9-2. MCG_STATUS REgISIEr . ..\ttt ettt e e e e e e e e 285
Figure9-3. MCG CTL REQISEr . ..ot e e e e e e e e e e e 286
Figure 9-4. CPU Watchdog Timer Register Format it e e 286
Figure 9-5. MG _CTL REQISEr . .. oottt e e et et et et et et et et et et e e 289
Figure9-6. MCi_STATUS REgISIEr e e 290
Figure9-7. MCi_MISCL AAreSSING v vttt e e e e e e e 293
Figure9-8. Miscellaneous Information Register (Thresholding Register Format) 294
Figure 10-1. Default SMRAM MemMOry Mapottt e e e ettt et 303
Figure 10-2. SMBASE RegIS el . ..ottt e e e e 303
Figure10-3. SMM-Revision ldentifier i i e e e e e 309
Figure 10-4. SMM_ADDRRegister FOrmat.t e 310
Figure 10-5. SMM_MASK Register FOrmMat. oottt e e e e 310
XXii

[AMD Public Use] Figures

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Figure 10-6. /O Instruction ResStart DWOrd. oot e e 316
Figure 11-1. SSE EXeCUtioN UNit StALE.ottt et 323
Figure 11-2. MMX EXeCUtion UNit SEaLEottt et e e e e e 324
Figure 11-3. X87 EXecUtionUNit Stateot e e e e e 326
Figure11-4. FSAVE/FNSAVE Image (32-Bit, ProtectedMode).o 328
Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)covvv. .. 329
Figure 11-6. FSAVE/FNSAVE Image (16-Bit, ProtectedMode). 330
Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes), 331
Figure 11-8. XFEATURE_ENABLED MASK Register (XCRO)voviriiiiiaeeeeennn, 334
Figure 11-9. FXSAVE and FXRSTOR Image (64-bit Mode).t 340
Figure 11-10. FXSAVE and FXRSTOR Image (Non-64-bitMode).t 340
Figure12-1. Task-Management RESOUICES.ttt e e e ettt ae s 347
Figure12-2. Task-Segment SEleCtorot e e e et e e 348
Figure12-3. TR Format, Legacy MOde.t e 349
Figure12-4. TR Format, LONgMOOEot 350
Figure 12-5. Relationship betweenthe TSSand GDT it 350
Figure 12-6. Legacy 32-bit TSSt e e e e e 352
Figure12-7. 1/O-Permission Bitmap EXample e e e e 355
Figure12-8. LoNgMoOde TSS FOIMaLot ittt et e et et et et ettt et ae s 357
Figure 12-9. Task-Gate Descriptor, Legacy Mode Only. e 358
Figure 12-10. Privilege-Check Examplesfor Task Gates.o ov i 366
Figure 13-1. Address-Breakpoint RegisterS (DRO-DR3)o 371
Figure 13-2. Debug-Status Register (DRB)ot e e e e e 372
Figure 13-3. Debug-Control Register (DR7)ot vttt e e e e et et et et e 373
Figure 13-4. Debug-Control MSR (DebugCtl) i e e 376
Figure 13-5. Control-Transfer Recording MSRS. e 377
Figure 13-6. Performance Counter FOrmMatottt e 386
Figure 13-7. Core Performance Event-Select Register (PerfEvtSeln). it 387
Figure 13-8. Northbridge Performance Event-Select Register (NB_PerfEvtSeln) 389
Figure 13-9. L2 Cache Performance Event-Select Register (L2l PerfEvtSeln)...................... 390
Figure 13-10. Time-Stamp Counter (TSC) ..ot vt ittt e e e e e et et et et et et et i e s 392
Figure 13-11. IBS Fetch Control Register(lbsFetchCtl) 395
Figure 13-12. IBS Fetch Linear Address Register (IbsFetchLinAd). oot 396

Figures XXiii

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Figure 13-13. IBS Fetch Physical Address Register (IbsFetchPhysAd) oot 397
Figure 13-14. IBS Execution Control Register (IbsOpCtl) 399
Figure 13-15. IBS Op Linear Address Register (IbSOPRIP)« oo v 400
Figure 13-16. IBSOp Data 1 Register (IbsOpDatal) i e 401
Figure 13-17. IBSOp Data3 Register (IbsOpDatal) it e e et e 403
Figure 13-18. IBS Data Cache Linear Address Register (IbsDcLinAd)o, 405
Figure 13-19. IBS Data Cache Physical Address Register (IbsDcPhysAd) 405
Figure 13-20. IBS Branch Target Address Register (IbsBrTarget).t 406
Figure 13-21. Generic EVeNt RECONd. oot e 411
Figure 13-22. Programmed Value Sample Event Record o i 412
Figure 13-23. Instructions Retired Event Record i e e et 413
Figure 13-24. Branch Retired EVent Record i i e et 414
Figure 13-25. DCache MiSSEVENt RECOIdot e ettt et 416
Figure 13-26. CPU Clocksnot Halted Event Record e 417
Figure 13-27. CPU Reference Clocks not Halted Event Record.t 418
Figure 13-28. Programmed Event ReCord. i e e 419
Figure 13-29. LWP_CFG—Lightweight Profiling FeaturesMSR. 424
Figure 13-30. LWPCB—L.ightweight Profiling Control Block 431
Figure 13-31. LWPCB Flags. . . . oottt et e e e e e e 435
Figure 13-32. LWPCB FilterSo e e e e 436
Figure 13-33. XSAVE Areafor LW o 440
Figure 15-1. EXITINTINFO for All INterCepts.o oot e e 478
Figure 15-2. EXITINFOLfor IOIO INterCeptot e e e e et et 486
Figure15-3. EXITINFOLfOr SMI INtercept. . .. oo it e e e et et et et e 492
Figure15-4. Layoutof VMCB Clean Field. i e e 496
Figure15-5. EVENTINJFEdintheVMCB e 500
Figure 15-6. Host Bridge DMA ChecKing. oottt e e e e 510
Figure 15-7. Format of DEV_OP Register (in PCl ConfigSpace)ovviiiiii it 511
Figure 15-8. Format of DEV_CAP Register (in PClI ConfigSpace). 512
Figure15-9. Format of DEV_BASE HI[N] RegiSters.ot e e e e e 513
Figure 15-10. Format of DEV_BASE LO[N] REGISIErS. . ..ot it i e et et 513
Figure 15-11. Format of DEV_MAP[N] REQISIErSottt e 513
Figure 15-12. Address Translation with Traditional Paging., 515
XXV

[AMD Public Use] Figures

AMDA

24593—Rev. 3.36—O0October 2020

Figure 15-13. Address Translation with Nested Paging

Figure 15-14.

Figure 15-15. vAPIC Backing Page Access
Figure 15-16. Virtual APIC Task Priority Register Synchronization
Physical APIC ID Table Entry
Physical APIC Tablein Memory
Logical APIC ID Table Entry
Logical APIC ID Table Format, Flat Mode
Logical APIC ID Table Format, Cluster Mode
Doorbell Register, MSR C001_011Bh
EXITINFOL ...
EXITINFO2 ...
Layout of VM_CR MSR (C001_0114h)
Layout of SMM_CTL MSR (C001_0116h)
TSC Ratio MSR (C000_0104h)
Guest DataRequest.cooiviin...

Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.
Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 16-7.
Figure 16-8.
Figure 16-9.

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h)

SLB ExampleLayout

EXAMPLE #VC FLOW

Block Diagram of a Typical APIC Implementation
APIC Base Address Register (MSR 0000_001Bh)
APIC ID Register (APIC Offset 20h)
APIC Version Register (APIC Offset 30h)
Extended APIC Feature Register (APIC Offset 400h)
Extended APIC Control Register (APIC Offset 410h)
General Local Vector Table Register Format
APIC Timer Local Vector Table Register (APIC Offset 320h)
Timer Current Count Register (APIC Offset 390h)
Figure 16-10. Timer Initial Count Register (APIC Offset 380h)
Figure 16-11. Divide Configuration Register (APIC Offset 3EOh)

Figure 16-12. Local Interrupt 0/1 (LINTO/1) Local Vector Table Register
(APIC Offset 350h/360h)594

Figure 16-13. Performance Monitor Counter Local Vector Table Register

(APIC Offset 340h)595

AMDG64 Technology

Figures

[AMD Public Use]

XXV

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Figure 16-15.
Figure 16-16.
Figure 16-17.
Figure 16-18.
Figure 16-19.
Figure 16-20.
Figure 16-21.
Figure 16-22.
Figure 16-23.

APIC Error Local Vector Table Register (APIC Offset 370h). 596
APIC Error Status Register (APIC Offset 280h) 596
Spurious Interrupt Register (APICOffset FOn) 597
Interrupt Command Register (APIC Offset 300h—3010h) 598
Remote Read Register (APICOffset COh) i e 600
Logical Destination Register (APIC OffsetDOh). o i, 601
Destination Format Register (APIC Offset EOh) 602
Arbitration Priority Register (APIC Offset 90h).t 603
Interrupt Request Register (APIC Offset 200h—270h) 604

Figure 16-24. In Service Register (APIC Offset 100n—170N)t e 605
Figure 16-25. Trigger Mode Register (APIC Offset 180h—1F0h). i, 606
Figure 16-26. Task Priority Register (APIC Offset 80h). e 607
Figure 16-27. Processor Priority Register (APIC Offset AOh) e 607
Figure 16-28. End of Interrupt (APIC OffSet BON)o e 608
Figure 16-29. Specific End of Interrupt (APIC Offset 420h) e 609
Figure 16-30. Interrupt Enable Register (APIC Offset 480h—4F0h) 609
Figure 17-1. P-State Current Limit Register (MSR C001 0061h) 612
Figure 17-2. P-State Control Register (MSR C001 0062h)t 612
Figure 17-3. P-State Status Register (MSR CO0L1 0063h)coiirie e e 613
Figure 17-4. Core Performance Boost (MSRCO0L _0015h) 614
Figure 17-5. Actual Performance Frequency Count (MSRO000_00E8h)covviivinnn.. 615
Figure 17-6. Max Performance Freguency Count (MSRO000_00E7h)., 615
Figure 17-7. MPERF Read Only (MSR CO00 OOE7h)ttt e e e 616
Figure 18-1. Interrupt Shadow Stack Table (ISST). e e 622
Figure 18-2. Shadow Stacks and Supervisor Shadow Stack Tokens. 624
Figure 18-3. Supervisor Shadow Stack ToKen 624
Figure 18-4. Shadow Stack ReStore TOKENot e e 627
Figure 18-5. Previous SSP TOKENottt e e e e 628
Figure 18-6. RSTORSSP and SAVEPREVSSP Operation.oviti i 629
XXVi

[AMD Public Use] Figures

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Tables

Table1-1. Operaling MOGES.o e e e e 11
Table1-2. Interruptsand EXCEPLIONSo 20
Table2-1. Instructions That Reference RSP o e 31
Table2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size.t 32
Table2-3. Invalid Instructionsin 64-Bit MoOde ot e 34
Table2-4. Invalid InstructionsinLongMode. 35
Table2-5. OpcodesReassigned in64-BitMode 36
Table2-6. DifferencesBetween LongModeandLegacy Mode., 39
Tabled-1. Segment RegiStarS.o e e e 75
Tabled-2. DESCIPIOr Ty PES. « ottt ettt ettt e e e e e e e e e 85
Table4-3. Code-Segment DesCriptor TYPES . . oottt et e e e e e e e e e 87
Table4-4. Data-Segment DESCriptor TYPES.o v it ettt e et e 88
Table4-5. System-Segment Descriptor Types (S=0)—Legacy Mode., 89
Table4-6. System-Segment Descriptor Types—LongMode ... i, 94
Table4-7. Descriptor-Entry Field ChangesinLongMode. 98
Table4-8. Segment Limit Checksin64-BitMode i 118
Table5-1. Supported Paging Alternatives (CRO.PG=1)ot 124
Table5-2. Physical-Page Protection, CRO.WP=0 e 156
Table5-3. Effect of CRO.WP=1 0n Supervisor Page ACCESS iii i e s 157
Table6-1. System Management INStructions. it e e 159
Table7-1. Memory Accesshby Memory Type. ...t e e e e e et 186
Table7-2. Caching Policy by Memory Type. e e 186
Table7-3. Memory Access Ordering RUIES. o e 188
Table7-4. AMDG64 Architecture Cache-Operating Modes 195
Table7-5. MTRR Type Feld ENCodings.ot e 201
Table7-6. Fixed-Range MTRR AddressSRaNges. oot ittt 203
Table7-7. Combined MTRR and Page-Level Memory Type with Unmodified PAT MSR........... 209
Table7-8. PAT TYPEENCOUINGSottt e e e e e e 211
Table7-9. PAT-Register PA-Field INdexingo e 212
Table7-10. Combined Effect of MTRR and PAT Memory TYpeS. oo 213
Table 7-11. Serialization Requirementsfor ChangingMemory TypeS. i i ii e 214
Table 7-12. Extended Fixed-Range MTRR TypeEncodings, 216
Table8-1. Interrupt Vector Sourceand CalsSe. . . .o oottt e et 229
Table8-2. Interrupt Vector ClassifiCationt e 230

Tables [AMD Public Use] xxvil

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Table8-3. Double-Fault Exception Conditions.t e 235
Table8-4. Invalid-TSSException Conditions. et 236
Table8-5. Stack EXCeption Error COdeSo vt e e e 238
Table8-6. General-Protection Exception Conditions i, 239
Table8-7. DatarType AlIgNMENtot e e 242
Table8-8. Control-Protection Error Codes vt 247
Table8-9. Simultaneous Interrupt Priorities e e e e e e 248
Table8-10. Simultaneous Floating-Point Exception Priorities iiint. 250
Table8-11. Virtual-8086 Mode Interrupt Mechanisms. i 262
Table8-12. Effect of Instructionsthat Modify the IFBit i 275
Table9-1. CPU Watchdog Timer TImeBaseot 287
Table9-2. CPU Watchdog Timer Count Select. e 287
Table9-3. Error Logging Prioritieso e 288
TablE O-4. EITOr SCOPE . . o ittt et et et e et e e 297
Table10-1. AMDG64 Architecture SMM State-SavVe AT€a.o v 304
Table10-2. Legacy SMM State-Save Area (Not used by AMD64 Architecture) 307
Table10-3. SMM Register INitializationt e 311
Table11-1. SSE Subsets— CPUID Feature ldentifiers i 320
Table11-2. Extended Save AreaFormat i e 334
Table11-3. XRSTOR Hardware-Specified Initial Values. i i, 337
Table11-4. Deriving FSAVE Tag Fiddfrom FXSAVE TagFied., 343
Table12-1. Effectsof Task NESHNG.ottt e e 367
Table13-1. Breakpoint-Setting EXamples.ot 378
Table13-2. Breakpoint Location by Condition 379
Table13-3. Host/GUESt Only Bitso e e e e e e 387
Table 13-4. Count Control Using CNT_MASK and INV i e 388
Table 13-5. Operating-System Modeand User ModeBitS 388
Table13-6. Eventld ValUes oot e 411
Table 13-7. Lightweight Profiling CPUID ValUes.o 421
Table 13-8. LWPCB—Lightweight Profiling Control Block Fields. 432
Table13-9. LWPCB Flters Fields. oo e 437
Table 13-10. XSAVE Areafor LWPFIElds.o e 441
Table14-1. Initial ProCesSor Staleottt e e e 450
Table 14-2. Initial State of Segment-Register Attributes. 452
Table 14-3. x87 Floating-Point State Initialization e 454
Table 14-4. Processor Operating MoOdesttt e e e e e e 459
XXViii Tables

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Table14-5. Long-Mode Consistency Checks i e 460
Table15-1. Guest Exception or INterrupt TYPES . ..ottt et et et ettt e e 479
Table15-2. EXITINFOLOr MOV CRX . .ottt ittt et ettt et et e 480
Table15-3. EXITINFOLTOr MOV DRX . ..ttt et e 480
Table15-4. EXITINFOLIOr INTN. ..ot e e e i 481
Table15-5. EXITINFOLTOr INVLPG. o e 481
Table15-6. Guest INStrUCtion BYtes.ot e e e 482
Table 15-7. INStrUCtiON INtErCEPLS.ot e e e e et e et e e 482
Table15-8. MSR RangesCovered by MSRPM. i e e e 487
Table15-9. TLB Control Byte ENCOINGS. oottt e e e e e 498
Table 15-10. Effect of the GIF onInterrupt Handling. e 499
Table 15-11. Guest EXception or INtermrupt TYPESo vttt e e e 501
Table 15-12. INIT Handling in Different OperatingModest i 504
Table 15-13. NMI Handling in Different OperatingModes i, 505
Table 15-14. SMI Handling in Different OperatingModes. it 505
Table 15-15. DEV Capability Block, Overall Layoutc.coooiii e 510
Table 15-16. DEV Capability Header (DEV_HDR) (in PCI ConfigSpace)o 511
Table 15-17. Encoding of Function FieldinDEV_OP Register 511
Table15-18. DEV_CR Control RegiSterot e e e e e e 512
Table 15-19. Combining Guest and HOSt PAT TYPESot i ittt et e a e 521
Table 15-20. Combining PAT and MTRR TYPESottt e e et 521
Table 15-21. GMET Page Configuraion.ottt ettt et e e e 522
Table 15-22. Guest VAPIC Register ACCeSSBehavior.o 533
Table 15-23. Virtual Interrupt Control (VMCB offset 60h). it 536
Table 15-24. New VMCB FieldsDefined by AVIC o e 537
Table 15-25. Physical APICID TableEntry Fields. e 540
Table 15-26. Logica APICID TableEntry Fields e 542
Table15-27. EXTINFOLFIElS.ot e e e e e e 548
Table15-28. EXTINFO2 Fields. oo e e e e 548
Table 15-29. ID Field—IPI Delivery Faillure Causeot i e 549
Table15-30. EXTINFOL FIEAS.ot e e e e e 549
Table15-31. EXTINFOZ FIElas.ot e e e e 550
Table 15-32. Encryption CONLrOlt e e e e 560
Table15-33. SEV/SME INtEraCtion e e e e 561
Table15-34. SEV_STATUSMSRFIESo e 562
Table 15-35. AE EXITCOUES.ottt e e e 564
Tables XXIX

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Table15-36. Fieldsof an RMP ENtry o e e 570
Table 15-37. RMP Page AsSignment SEttingsS.ottt et et et et et e et 572
Table 15-38. VMPL Permission Mask Definition e 574
Table 15-39. RMPMemory AccessChecks i e e 576
Table 15-40. PVALIDATE/RMPADJUST Page Size Mismatch Combinations. 578
Table15-41. VMRUN Page Checks e e e e e 579
Table 15-42. Non-Coherent Memory TYpe CONVEISION cv ittt et ettt ettt 580
Table16-1. Interrupt Sourcesfor Local APIC. i e 584
Table 16-2. AP C REgIS OIS . . . oottt 587
Table16-3. DIVIde ValUESt e e e 594
Table16-4. Vaid ICRFed Combinations.o.i et e e i 600
Table18-1. Shadow Stack Operationsfor Far Transfers. e 621
Table 18-2. Shadow Stack Management INStruCtionsttt e e 630
Table A-1. MSRsof the AMDG64 Architecture. e 633
Table A-2. System-Software MSR Cross-Reference e 638
TableA-3. Memory-Typing MSR Cross-Reference. e 639
Table A-4. Machine-Check MSR Cross-Reference e 641
Table A-5. Software-Debug MSR Cross-Reference. e 642
Table A-6. Performance-Monitoring MSR Cross-Reference. 643
Table A-7. Secure Virtual MachineMSR Cross-Reference. 644
Table A-8. System Management Mode MSR Cross-Reference. ...t 646
Table A-9. CPUID Namestring MSR CrossReference e 646
Table A-10. Shadow Stack MSR Cross ReEference.o e e e 647
TableB-1. VMCB Layout, Control Ar€a.t e et 649
TableB-2. VMCB Layout, State SaVe ArBa. oottt et et e e e e 654
Table B-3. SWaD TYPES. . .ot t eee 657
TableB-4. VMSA Layout, State Save Areafor SEV-ES. 657
TableC-1. SVM INtErcept COOBS oottt e e e e e e e 663
XXX Tables

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Revision History

Date Revision | pescription

Added Shadow Stack support.

Chapter 3: Section 3.1: Added content. Section 3.1.3: Added bit 23 and
new content. Section 3.2.7: Added Shadow Stack Registers as new
section 3.2.7.

Chapter 5: Section 5.6: Updated content.

Chapter 6: Added content to Table 6-1. Added section 6.7.

Chapter 7: Table 7-3. Updated.

Chapter 8: Table 8-1 and Table 8-2: Added content. Section 8.4: Updated
content. Section 8.4.2: Added content. Added #CP as new section
8.2.20. Table 8-8: Added content. Added new Shadow Stack section
August 2020 3.36 8.7.6. Section 8.9: Added bullet. Added new 8.9.4.1 section.

Chapter 10: Updated Table 10-1. Section 10.4: Added bullet.

Chapter 11: Section 11.5.2 and Figure 11-8: Updated table and figure.
Section 11.5.8: Updated Table 11-3.

Chapter 12: Section 12.2.2: Updated. Section 12.2.4: Updated Figure 12-
6. Section 12.3.2: Updated content and added bullets.

Chapter 15: Section 15.5.1: Updates. Section 15.15.3: Updated Figure
15-4. Section 15.25.6: Added bullet. Section 15.29.1. Updates. Section
15.29.4.1: Added content. Section 15.29.8.2: Added content.

Added Chapter 18.

Appendix A: Table A-1: Added content. Added new section A.10.
Appendix B: Table B-1, Table B-2, and Table 4: Added content.

May 2020 3.35 Sections 5.6.1 and 5.6.6: Minor updates.
Figure 5-16: Updated figure.

[AMD Public Use]

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Date

Revision

Description

April 2020

3.34

Section 3.1.3: Updated register information. Added PCIDE and PKE
registers. Updated (TCE) content.

Section 5.3.2: Added Process Context Identifier register information and
register figure.

Section 5.3.3: Updated figure.

Section 5.3.4: Updated figure.

Section 5.3.5: Updated figure.

Section 5.4.1: Added (MPK) register information.

Section 5.5.1: Inserted Process Context Identifiers as Section 5.5.1.
Section 5.5.3: Added bullets to Implicit Invalidations list.

Section 5.6: Updated content.

Section 8.2.15: Added bullet.

Section 8.4.2: Updated register figure and added PK register information.
Section 11.5.2: Updated register figure and table.

Section 14.1.3: Updated table.

Section 15.9: Updated table.

Appendix B: Updated table.

Appendix C: Updated table.

XXXII

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Date Revision | pescription

Section 1.1.2: Clarification on address size support.

Section 3.2.1: New feature enable bits in SYSCFG MSR.
Section 7.6.5: Updated terminology.

Section 7.10.6: Clarification to encrypted memory operation.
Section 8.1.4: Clarification to IRET and NMI behavior.
Tables 8-1 and 8-2: Added #HV exception.

Inserted new 8.2.20 section for #HV exception.

Section 8.4.2: Changes for SEV-SNP extension.

Table 8-8: Added SEV-related exceptions.

Figure 10-6: Updated 1/0 Restart DWORD.

Section 15 and 15.1: General updates.

Section 15.5.2: Relocated VMLOAD/VMSAVE documentation.
April 2020 333 Section 15.2.4 and 15.2.6: Updated content.

Section 15.6: Added content.

Table 15-7: Added content.

Section 15.25.6: Clarification.

Section 15.25.13: General clarifications.

Section 15.33.1 and 15.33.2: General clarifications.

Section 15.34.3, 15.34.7, and 15.34.10: Clarifications, and additions for
SEV-SNP.

Table 15-35: Added content.

Section 15.35.8: Corrected terminology.

Section 15.36: Added SEV-SNP extension documentation.
Table A-1 and Table A-7: Added SEV-SNP related MSRs.
Appendix B: Updates for SEV-SNP extension.

Table C-1: Added exit code for SEV-SNP extension.

October 2019 3.32 Added UMIP, XSS, GMET, VTE, MCOMMIT, and RDPRU.

Added CLWB and WBNOINVD details.

Clarified FP error pointer save/restore behavior.

July 2019 3.31 Corrected description of APIC Software Enable functionality.

Clarified canonical address checking behavior.

Clarified fault generation. October 2020n for instructions that cross page
or segment boundaries.

[AMD Public Use] oo

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Date

Revision

Description

September 2018

3.30

Modified Section 7.4
Modified Section 7.6.4
Modified Section 8.5.2
Modified Section 9.2
Corrected Figure 9-4
Corrected Table 9-1
Modified Section 9.3.2
Corrected Figure 9-6
Corrected Table 9-4
Modified Section 14.2.3
Modified Section 14.4
Modified Section 15.6
Modified Section 15.7
Modified Section 15.34.9
Modified Section 15.34.10
Modified Section 15.35.2
Corrected Table B-4 in Appendix B

December 2017

3.29

Modified Sections 7.10.1 and 7.10.4.
Modified Sections 15.34.1, 15.34.7.
Added new Section 15.34.10.
Modified Section 15.35.10.

Modified Appendix A, Table A-7.

March 2017

3.28

Modified CR4 Register, Section 3.1.3.

Removed UD2 in Table 6-1.

Added new bullet in Section 7.1.1.

Modified Note in Table 7-1.

Added new Section 7.4.1.

Clarified Self Modifying Code in Section 7.6.1.

Added UDO and UD1 instructions in Section 8.2.7.

Added Instructions Retired Performance counter in Section 13.1.1.
Modified Table in Section 15.34.9.

XXXIV

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Date

Revision

Description

Added Resume Flag (RF) Bit in Section 3.1.6, "RFLAGS Register,” on page
52.

Added Tom2ForceMemTypeWB in Section 3.2.1, "System Configuration
Register (SYSCFG),” on page 61.

Clarified SY SCALL and SY SRET in Section 6.1.1, "SYSCALL and
SYSRET,” on page 163.

Added Section 7.3.2, "Access Atomicity,” on page 184.

Updated Note b in Table 7-11 on page 214.

Modified Table 8-1, “Interrupt Vector Source and Cause”, on page 229.
Modified Table 8-2, “Interrupt Vector Classification”, on page 230.
Added Section 8.2.22, "#VC—VMM Communication Exception (Vector
29),” on page 244.

December 2016 3.27 .
Added a Note in Chapter 10, "System-Management Mode," on page 301.
Added Section 10.5, "Multiprocessor Considerations,” on page 317.
Updated CPUID 8000 _001F[EAX] and added CPUID
8000_001F[EDX] in Section 15.34.1, " Determining Support for
SEV,” on page 556.
Added new Section 15.35, "Encrypted State (SEV-ES),” on page 562.
Clarified TSC Ratio MSR in Section 15.30.5 "TSC Ratio MSR
(C0O00_0104h)” on page 552.
Modified Appendix B, "Layout of VMCB” on page 649.
Added Table B-3, “Swap Types”, on page 657.
Added Codes 8Fh, 90h-9Fh, and 403h in Table C-1, “SVM Intercept
Codes”, on page 663.
Clarification on loading a null selector into FS or GS added in Section
4.5.3, "Segment Registers in 64-Bit Mode,” on page 76
Translation table diagrams corrected for definition of bit 8 in Section 5.5,
"Translation-Lookaside Buffer (TLB),” on page 147
CRO.CD implementation-dependent behavior noted in Section 7.6.2,
"Cache Control Mechanisms,” on page 194
Added clarification on IST usage in Section 8.9.4, "Interrupt-Stack Table,”

April 2016 3.26

on page 268.

Added new Section 7.10, "Secure Memory Encryption,” on page 220.
Added guideline for secure AP startup in Section 15.27.8, "Secure
Multiprocessor Initialization,” on page 528

Added TLB maintenance requirement for multiprocessor VM's in Section
15.29.4, "VMCB Changes in Support of AVIC,” on page 536.

Added new Section 15.34, "Secure Encrypted Virtualization,” on page
555

[AMD Public Use] o

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Date Revision | pescription

Added new section 15.33 Nested Virtualization for coverage of VMSAVE
June 2015 3.25 and VMLOAD Virtualization and Virtual GIF.

Various minor edits.

Added description of Supervisor-Mode Execution Prevention. See Section
5.6.5 "Supervisor-Mode Execution Prevention (CR4.SMEP) Bit” on page
153.

Indicated the deprecation of the Processor Feedback Interface. See
Section 17.4, "Processor Feedback Interface,” on page 616.

Added Section 17.5, "Processor Core Power Reporting,” on page 616.

October 2013 3.24

Clarified guidelines for implementing cross-modifying code in the sub-
section "Cross-Modifying Code” on page 193.

Added AVIC description. See Section 15.29, "Advanced Virtual Interrupt
Controller,” on page 530.

Added L21 PMC architecture definition. See Section 13.2, "Performance
Monitoring Counters,” on page 384.

May 2013 3.23

Clarified processor behavior on write of EFER[LMA] bit in Section 3.1.7
"Extended Feature Enable Register (EFER)” on page 56.

Clarified difference between cold reset and warm reset in Section 9.3,
"Machine Check Architecture MSRs,” on page 283.

Added information on FFXSR feature bit to Table 11-1 on page 320.
September 2012 3.22 Clarified SMM code responsibility to manage VMCB clean bits. See
Section 15.15.2, "Guidelines for Clearing VMCB Clean Bits,” on page 495.
Added a note to Table 15-9 on page 498 to indicate that all encodings of
TLB_CONTROL not defined are reserved.

Corrected information concerning the assignment of logical APIC IDs in
Section 16.6.1, "Receiving System and IPI Interrupts,” on page 601.

Added definition of processor feedback interface—frequency sensitivity
monitor (See Section 17.4, "Processor Feedback Interface,” on page 616)
Added Instruction-Based Sampling in a new section of Chapter 13 (See
Section 13.3, "Instruction-Based Sampling,” on page 393.)

Reworked Introduction and first section of Chapter 9, "Machine Check
Architecture," on page 279 and added deferred error handling.

March 2012 3.21 Added description of CR4[FSGSBASE] bit. (See Section 3.1.3, "CR4
Register,” on page 47.)

Added references to the RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions in discussion of FS and GS segment descriptors.
(See "FS and GS Registers in 64-Bit Mode” on page 76)

Added Section 6.3.2, "Accessing Segment Register Hidden State,” on
page 168.

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Date

Revision

Description

December 2011

3.20

Clarified description of the Cache Disable (CD) memory type in Section
7.4 "Memory Types” on page 184.

Added caveat: an overflow of either APERF or MPERF can invalidate the
effective frequency calculation. See Section 17.3, "Determining Processor
Effective Frequency,” on page 614.

Other minor editorial changes.

September 2011

3.19

Added XSAVEOPT to discussions on XSAVE.

Corrections to discussion on multiprocessor memory access ordering in
Chapter 7.

Added discussion of extended core and northbridge performance
counters and feature indicators to Chapter 13.

Added Lightweight Profiling (LWP) to Chapter 13.
Added Global Timestamp Counter, Continuous Mode to LWP description

Clarification: Function of pin A20M# is only defined in real mode.
Statement added to Section 1.2.4, "Real Addressing,” on page 10.

Eliminated hardware P-state references

May 2011

3.18

Added information for OSXSAVE and XSAVE features.
Added Cache Topology, Pause Filter Threshold, and XSETBV information.
Updated TSC ratio information.

Corrected description of FXSAVE/FXRSTOR exception behavior when
CRO.EM=1

June 2010

3.17

Replaced missing figures in Chapter 8, "Exceptions and Interrupts,” on
page 225.

June 2010

3.16

Updated information on performance monitoring counters in
"Performance-Monitoring Counter Enable (PCE)” on page 50 and 6.2.5,
”Accessing Model-Specific Registers” on page 167.

Revised Table 4-1, "Segment Registers” on page 75.

Add flush by ASID information to section 15.16, "TLB Control” on page
497.

Added information on VMCB clean field to Chapterl5, "Secure Virtual
Machine” on page 467 and Appendix B, "Layout of VMCB” on page 649.
Added section 15.10, "IOIO Intercepts” on page 485.

Added section 15.30.5, "TSC Ratio MSR (C000_0104h)” on page 552.
Added section 17.2, "Core Performance Boost” on page 613.

[AMD Public Use] oo

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Date Revision | pescription

Added section 7.5, "Buffering and Combining Memory Writes” on page
189
Added MFENCE to list of "Serializing Instructions” on page 198.
Updated section 7.6.1, "Cache Organization and Operation” on page 191.
Updated Table 7-3, “Memory Access Ordering Rules”, on page 188 and
notes.
Updated 7.4, "Memory Types” on page 184.
Clarified 5.5.3, "TLB Management” on page 148.
Added ”Invalidation of Table Entry Upgrades.” on page 149.
Updated "Speculative Caching of Address Translations” on page 149.
Update "Handling of D-Bit Updates” on page 150.
Revised and updated section 7.2, "Multiprocessor Memory Access
Ordering” on page 178 ff.
Added information on long mode segment-limit checks in "Extended
Feature Enable Register (EFER)” on page 57table on page 57 and "Long
Mode Segment Limit Enable (LMSLE) bit” on page 58 on page 58.

November 2009 3.15

Added discussion of "Data Limit Checks in 64-bit Mode” on page 118on
page 118.

Updated Table 6-1, “System Management Instructions”, on page 159.
Updated "Canonicalization and Consistency Checks” on page 473on page
473.

Added information about the next sequential instruction pointer (nRIP) in
15.7.1, "State Saved on Exit” on page 477.

Updated priority definition of PAUSE instruction intercept in Table 15-7,
“Instruction Intercepts”, on page 482.

Added nRIP field to Table B-1, “VMCB Layout, Control Area”, on

page 649.

Clarified information on ICEBP event injection, on page 500.

Deleted erroneous statement concerning the operation of the General
Local Vector Table register Mask bit in section 16.4.

Clarified the description of the Interrupt Command Register Delivery
Status bit in section "Interprocessor Interrupts (IP1)” on page 5970on
page 597.

XXXViii

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Date Revision | pescription

Added information on "Speculative Caching of Address Translations,”
"Caching of Upper Level Translation Table Entries,” "Use of Cached
Entries When Reporting a Page Fault Exception,” "Use of Cached Entries
When Reporting a Page Fault Exception,” "Handling of D-Bit Updates,”
"Invalidation of Cached Upper-level Entries by INVLPG” on page 150 and
"Handling of PDPT Entries in PAE Mode” on page 150to section 5.5.3,
3.14 “TLB Management” on page 148.

Added 15.21.7, "Interrupt Masking in Local APIC” on page 504.

Added 16.3.6, "Extended APIC Control Register” on page 589; clarified
the use of the ICR DS bit in 16.5, "Interprocessor Interrupts (IP1)” on
page 597.

Added minor clarifications and corrected typographical and formatting
errors.

September
2007

Added 5.3.5, "1-Ghyte Page Translation” on page 140.

Added 7.2, "Multiprocessor Memory Access Ordering” on page 178
Added divide-by-zero exception to Table 8-9, “Simultaneous Interrupt
Priorities”, on page 248.

Added information on "CPU Watchdog Timer Register” on page 286and
"Machine-Check Miscellaneous-Error Information Register
0(MC/_MISCO0)” on page 292to Chapter 9.

Added SSE4A support to Chapter 11, "SSE, MMX, and x87 Programming”
on page 319.

Added Monitor and MWAIT intercept information to section 15.9,

July 2007 3.13 "Instruction Intercepts” on page 482 and reorganized intercept
information; clarified 15.16.1, "TLB Flush” on page 497.

Added Monitor and MWAIT intercepts to tables B-1, "VMCB Layout,
Control Area” on page 649 and C-1, "SVM Intercept Codes” on page 663.
Added Chapter 16, "Advanced Programmable Interrupt Controller
(APIC)” on page 583, Chapter 17, "0S-Visible Workaround Information”
on page 515, Chapter 17, "Hardware Performance Monitoring and
Control” on page 611.

Added Table A-7, “Secure Virtual Machine MSR Cross-Reference”, on
page 644.

Added minor clarifications and corrected typographical and formatting
errors.

September

2006 3.12 Added numerous minor clarifications.

Added Chapter 15, Secure Virtual Machine. Incorporated numerous

December 2005 311 factual corrections and updates.

Corrected Table 8-6, “General-Protection Exception Conditions”, on
page 239. Added SSE3 information. Clarified and corrected information
February 2005 3.10 on the CPUID instruction and feature identification. Added information
on the RDTSCP instruction. Clarified information about MTRRs and PATs
in multiprocessing systems.

[AMD Public Use]

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Date

Revision

Description
September . .
2003 3.09 Corrected numerous minor typographical errors.
Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor
errors of omission. Documentation of CRO.NW bit has been corrected.
April 2003 3.08 Several register diagrams and figure labels have been corrected.
Description of shared cache lines has been clarified in 7.3, "Memory
Coherency and Protocol” on page 181.
September 3.07 Made numerous small grammatical changes and factual clarifications.
2002 ’ Added Revision History.

x|

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Preface

About This Book

Thisbook ispart of amultivolumework entitled the AMD®64 Architecture Programmer’ sManual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

Thisvolume (Volume 2) isintended for programmers writing operating systems, loaders, linkers,
devicedrivers, or system utilities. It assumes an understanding of AM D64 architecture application-
level programming as described in Volume 1.

This volume describesthe AM D64 architecture’ s resources and functions that are managed by system
software, including operating-mode control, memory management, interrupts and exceptions, task and
state-change management, system-management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1. Details about each instruction are
described in Volumes 3, 4, and 5.

Organization

This volume begins with an overview of system programming and differences between the x86 and
AMD®64 architectures. Thisisfollowed by chaptersthat describe the following details of system
programming:

» System Resources—T he system registers and processor |D (CPUID) functions.

* Segmented Virtual Memory—The segmented-memory models supported by the architecture and
their associated data structures and protection checks.

» Page Trandation and Protection—The page-translation functions supported by the architecture
and their associated data structures and protection checks.

[AMD Public Use] .

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» SystemInstructions—Theinstructions used to manage system functions.

 Memory System—The memory-system hierarchy and its resources and protocols, including
memory-characterization, caching, and buffering functions.

» Exceptions and Interrupts—Details about the types and causes of exceptions and interrupts, and
the methods of transferring control during these events.

* Machine-Check Mechanism—T he resources and functions that support detection and handling of
machine-check errors.

» System-Management Mode—T he resources and functions that support system-management mode
(SMM), including power-management functions.

* SSE, MMX, and x87 Programming—T he resources and functions that support use (by application
software) and state-saving (by the operation system) of the 256-bit media, 128-bit media, 64-bit
media, and x87 floating-point instructions.

* Multiple-Processor Management—T he features of the instruction set and the system resources and
functions that support multiprocessing environments.

» Debug and Performance Resources—The system resources and functions that support software
debugging and performance monitoring.

* Legacy Task Management—Support for the legacy hardware multitasking functions, including
register resources and data structures.

* Processor Initialization and Long-Mode Activation—The methods by which system software
initializes and changes operating modes.

* Mixing Code Across Operating Modes—Things to remember when running programs in different
operating modes.

» Secure Virtual Machine—The system resources that support machine virtualization.
* Advanced Programmable Interrupt Controller (APIC) operation.

There are appendices describing details of model-specific registers (M SRs) and machine-check
implementations. Definitions assumed throughout thisvolume are listed below. Theindex at the end of
this volume cross-references topics within the volume. For other topicsrelating to the AMD64
architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists anumber of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents’ on page liii for further information about the legacy x86 architecture. Finaly,
the Register s section lists the registers which are a part of the system programming model.

- [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a4-bit value.

FOEA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an al pha suffix are decimal unless the context indicates otherwise.

7.4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the“_RRR” notation isfollowed by
“ XYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CROCR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to afield within aregister—in this case, the PE field of the CRO register.

CRO[PE] =1,CRO.PE=1
The PE field of the CRO register is set (containsthe value 1).

EFER[LME] =0, EFER.LME=0
The LME field of the EFER register is cleared (contains avalue of 0).

DS:S|

A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DSin thisexample) iscombined with the offset contained in the second register (Sl inthis
example) to form areal or virtual address.

[AMD Public Use] i

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

RFLAGS[13:12]

A field within aregister identified by its bit range. In this example, corresponding to the |OPL
field.

Definitions

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
asregister extensions, are supported for system and application software.

absolute

Said of adisplacement that referencesthe base of acode segment rather than an instruction pointer.
Contrast with relative.

ASID
Address space identifier.

byte
Eight bits.

clear
To writeabit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address sizeis 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
Toirreversibly write, in program order, an instruction’ sresult to software-visible storage, such asa
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’ s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

X [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absol ute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control istransferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
isprovided instead of calling the handler.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, asin “flush the cache
line,” or (2) invalidate, asin “flush the pipeline,” or (3) change avalue, asin “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

GPA

Guest physical address. In avirtualized environment, the page tables maintained by the guest
operating system provide the translation from the linear (virtual) address to the guest physical

[AMD Public Use] xw

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

address. Nested page tables define the trandation of the GPA to the host physical address (HPA).
See SPA and HPA.

HPA

Host physical address. The address space owned by the virtual machine monitor. In a virtualized
environment, nested page translation tables controlled by the VMM provide the translation from
the guest physical addressto the host physical address. See GPA.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “ Related Documents’ on page liii for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AM D64 architecturein which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

LIP
Linear Instruction Pointer. LIP= (CS.base + rIP).

X [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

long mode
An operating mode unique to the AMD®64 architecture. A processor implementation of the

AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.
Isb
L east-significant bit.
LSB
L east-significant byte.
main memory

Physical memory, such as RAM and ROM (but not cache memory) that isinstalled in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for acontrol purpose.

MBZ

Must be zero. If software attemptsto set an MBZ bit to 1 in a system register, a general-protection
exception (#GP) occurs; if in atranglation table entry, areserved-bit page fault exception (#PF)
will occur if the hardware attemptsto use the entry for address trandlation. See reserved.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifiesamemory operand directly, without usingaModRM or SIB
byte.

msb

Most-significant bit.
MSB

Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

[AMD Public Use] i

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’ s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack
A portion of a stack segment in memory that is used to link procedures. Also known as a program
stack.

program stack
See procedure stack.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Value returned on aread is always zero (0) regardless of what was previously written. See
reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

xlviii [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of areserved field (unless
qualified asRAZ), nor upon the ability of such fieldsto return apreviously written state.

If afield is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified asIGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

shadow stack
A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

Set
To writeabit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(1), and base (B).

SPA

System physical address. The address directly used to address system memory. Under SVM, also
known as the host physical address. See HPA.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

SVM

Secure virtual machine. AMD’ s virtualization architecture. SVM is defined in Chapter 15 on
page 467.

System software

Privileged software that owns and manages the hardware resources of a system after initialization
by system firmware and controls access to these resources. In a non-virtualized environment,

[AMD Public Use] i

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

system software is provided by the operating system. In a virtualized environment, system
software islargely equivalent to the virtual machine monitor (VMM), a'so commonly known as
the hypervisor.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which afloating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single data
object. Most of the SSE and 64-bit mediainstructions use vectors as operands.

(2) Anindex into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

Inthefollowing list of registers, the names are used to refer either to agiven register or to the contents
of that register:

AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.

AL-DL
Thelow 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

AL—15B

Thelow 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B—R15B registers, availablein 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters. Compare r AX— SP.

EFER
Extended features enabl e register.

eFLAGS
16-bit or 32-hit flags register. Compare rFLAGS

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Comparer|P.

EIP

32-hit (extended) instruction-pointer register.
FLAGS

16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit datasize, theseare AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
datasize, theseinclude RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

[AMD Public Use] !

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

P

16-bit instruction-pointer register.
LDTR

Local descriptor table register.

MSR
Model -specific register.

r8—15
The 8-bit RBB—R15B registers, or the 16-bit RBW—-R15W registers, or the 32-bit RBD-R15D
registers, or the 64-bit R8—R15 registers.

rAX—ISP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SPregisters, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBPregister.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS

rP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

" [AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
RIP

64-bit instruction-pointer register.
RSI

64-bit version of the ES| register.
RSP

64-bit version of the ESPregister.
SP

Stack pointer register.
SS

Stack segment register.
SSP

Shadow-stack pointer register.
TPR

Task priority register (CR8), a new register introduced in the AMDG64 architecture to speed
interrupt management.

TR
Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registersthat hold
scala and vector operands used by the SSE instructions.

Endian Order

The x86 and AM D64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they areillustrated
with their least significant byte at the right side. Strings areillustrated in reverse order, because the
addresses of their bytesincrease from right to left.

Related Documents
e Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

» Rakesh Agarwal, 80x86 Architecture & Programming: Volume I, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

« AMD, BIOSand Kernel Developer’s Guide (BKDG) for particular hardware implementations of
older families of the AMDG64 architecture.

[AMD Public Use] .

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMDG64 architecture.

AMD, AMD 1/0O Virtualization Technology (IOMMU) Specification, Revision 2.2 or later; order
number 48882.

AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabgjyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 4869.C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

liv

[AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

IBM Corporation, 4869_C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486D X2 Data Book, IBM Corporation, Essex Junction, VT,
1994,

Institute of Electrical and Electronics Engineers, IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE Sandard for Radix-1ndependent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586™ Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686™ Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Sreaming SMD Extensions in the Pentium® I,
www.x86.org/articles/sse_ptl/ simdl.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOSExtender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

Walter A. Triebel, The 80386D X Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
John Wharton, The Compl ete x86, MicroDesign Resources, Sebastopol, California, 1994.

[AMD Public Use] N

AMDAA
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

v [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

1 System-Programming Overview

Thisentire volumeisintended for system-software devel opers—programmers writing operating
systems, loaders, linkers, device drivers, or utilitiesthat require accessto system resources. These
system resources are generally available only to software running at the highest-privilege level
(CPL=0), dsoreferred to as privileged software. Privilege levels and their interactions are fully
described in “ Segment-Protection Overview” on page 99.

This chapter introduces the basic features and capabilities of the AMD64 architecture that are
available to system-software devel opers. The concepts include:

* The supported address forms and how memory is organized.
* How memory-management hardware makes use of the various address forms to access memory.

» The processor operating modes, and how the memory-management hardware supports each of
those modes.

e Thesystem-control registers used to manage system resources.

e Theinterrupt and exception mechanism, and how it is used to interrupt program execution and to
report errors.

» Additional, miscellaneous features available to system software, including support for hardware
multitasking, reporting machine-check exceptions, debugging software problems, and optimizing
software performance.

Many of the legacy features and capabilities are enhanced by the AM D64 architecture to support 64-
bit operating systems and applications, while providing backward-compatibility with existing
software.

1.1 Memory Model

The AM D64 architecture memory model is designed to alow system software to manage application
software and associated datain a secure fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The trandation mechanisms allow system
softwareto rel ocate applications and data transparently, either anywherein physical-memory space, or
in areas on the system hard drive managed by the operating system.

Inlong mode, the AM D64 architecture implements a flat-memory model. In legacy mode, the
architecture implements all legacy memory models.

System-Programming Overview [AM D PUbllC Use] 1

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

1.1.1 Memory Addressing

The AMDG64 architecture supports addressrel ocation. To do this, several types of addresses are needed
to completely describe memory organization. Specifically, four types of addresses are defined by the
AMD®64 architecture:

* Logical addresses

» Effective addresses, or segment offsets, which are a portion of the logical address.
e Linear (virtual) addresses

* Physica addresses

Logical Addresses. A logical addressisareferenceinto asegmented-address space. It iscomprised
of the segment selector and the effective address. Notationally, alogical addressis represented as

Logi cal Address = Segnent Sel ector : Ofset
The segment sel ector specifies an entry in either the global or local descriptor table. The specified

descriptor-table entry describes the segment location in virtual-address space, its size, and other
characteristics. The effective address is used as an offset into the segment specified by the selector.

Logical addresses are often referred to asfar pointers. Far pointers are used in software addressing
when the segment reference must be explicit (i.e., areference to a segment outside the current

segment).

Effective Addresses. The offset into amemory segment isreferred to as an effective address (see
“Segmentation” on page 5 for adescription of segmented memory). Effective addresses are formed by
adding together elements comprising a base value, a scaled-index value, and a displacement value.
The effective-address computation is represented by the equation

Ef fective Address = Base + (Scale x Index) + D splacenent

The elements of an effective-address computation are defined as follows:

* Base—A value stored in any general-purpose register.

e Scale—A positivevalueof 1, 2, 4, or 8.

e Index—A two’s-complement value stored in any general-purpose register.

« Displacement—An 8-bit, 16-hit, or 32-bit two’ s-complement value encoded as part of the
instruction.

Effective addresses are often referred to as near pointers. A near pointer is used when the segment
selector is known implicitly or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a processor implementation does not support
the full 64-bit virtual-address space, the effective address must bein canonical form (see “Canonical
Address Form” on page 4).

2 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Linear (Virtual) Addresses. The segment-selector portion of alogical address specifies a segment-
descriptor entry in either the global or local descriptor table. The specified segment-descriptor entry
contains the segment-base address, which is the starting location of the segment in linear-address
space. A linear addressisformed by adding the segment-base address to the effective address
(segment offset), which creates areference to any byte location within the supported linear-address
space. Linear addresses are often referred to as virtual addresses, and both terms are used
interchangeably throughout this document.

Li near Address = Segnment Base Address + Effective Address

When the flat-memory model is used—asin 64-bit mode—a segment-base addressistreated as 0. In
thiscase, the linear addressisidentical to the effective address. Inlong mode, linear addresses must be
in canonical addressform, as described in “Canonical Address Form” on page 4.

Physical Addresses. A physical addressisareference into the physi cal-address space, typically
main memory. Physical addresses are translated from virtual addresses using page-translation
mechanisms. See “Paging” on page 7 for information on how the paging mechanism is used for
virtual-address to physical -address tranglation. When the paging mechanism is not enabled, the virtual
(linear) addressis used as the physical address.

1.1.2 Memory Organization

The AM D64 architecture organizes memory into virtual memory and physical memory. Virtual-
memory and physical-memory spaces can be (and usually are) different in size. Generally, the virtual -
address space is much larger than physical-address memory. System software rel ocates applications
and data between physical memory and the system hard disk to make it appear that much more
memory isavailable than really exists. System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the smaller physical-address space.

Virtual Memory. Software usesvirtual addressesto access|ocations within the virtua-memory
space. System software is responsible for managing the relocation of applications and datain virtual-
memory space using segment-memory management. System software is also responsible for mapping
virtual memory to physical memory through the use of page trandation. The AMDG64 architecture
supports different virtual-memory sizes using the following address-trans ation modes:

* Protected Mode—T his mode supports 4 gigabytes of virtual-address space using 32-bit virtual
addresses.

* Long Mode—This mode supports 16 exabytes of virtual-address space using 64-bit virtual
addresses. A given implementation may however support less than this, as reported by the CPUID
featureidentification facility.

System-Programming Overview [AM D PUb“C Use] 3

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Physical Memory. Physical addresses are used to directly access main memory. For a particular
computer system, the size of the available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of physical memory accessible depends on the
processor implementation and on the address-translation mode. The AM D64 architecture supports
varying physical-memory sizes using the following address-translation modes:

* Real-Address Mode—This mode, also called real mode, supports 1 megabyte of physical-address
space using 20-bit physical addresses. This address-translation mode is described in “Real
Addressing” on page 10. Real mode is available only from legacy mode (see “Legacy Modes’ on
page 14).

» Legacy Protected Mode—T his mode supports several different address-space sizes, depending on
the translation mechanism used and whether extensions to those mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-address space using 32-bit physical
addresses. Both segment trandlation (see “ Segmentation” on page 5) and page trandation (see
“Paging” on page 7) can be used to access the physical address space, when the processor is
running in legacy protected mode.

When the physical-address size extensions are enabled (see “Physical-Address Extensions (PAE)
Bit” on page 125), the page-translation mechanism can be extended to support 52-bit physical
addresses. 52-bit physical addresses alow up to 4 petabytes of physical-address space to be
supported. (Currently, the AMD®64 architecture supports 40-bit addresses in this mode, alowing
up to 1 terabyte of physical-address space to be supported.

* Long Mode—Thismodeis unique to the AMDG64 architecture. This mode supportsup to 4
petabytes of physical-address space using 52-bit physical addresses. Long mode requiresthe use of
page-trand ation and the physical-address size extensions (PAE).

1.1.3 Canonical Address Form

Long mode defines 64 bits of virtual-address space, but processor implementations can support less.
Although some processor implementations do not use al 64 bits of the virtual address, they all check
bits 63 through the most-significant implemented bit to see if those bitsare all zerosor al ones. An
addressthat complies with this property isin canonical addressform. In most cases, avirtua-memory
reference that is not in canonical form (in either the linear or effective form of the address) causesa
general-protection exception (#GP) to occur. However, implied stack references where the stack
addressis not in canonical form causes a stack exception (#SS) to occur. Implied stack references
include al push and pop instructions, and any instruction using RSP or RBP as a base register.

By checking canonical-address form, the AM D64 architecture prevents software from exploiting
unused high bits of pointersfor other purposes. Software complying with canonical-addressformon a
specific processor implementation can run unchanged on long-mode implementations supporting
larger virtual-address spaces.

4 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

1.2 Memory Management

Memory management consists of the methods by which addresses generated by software aretrans ated
by segmentation and/or paging into addressesin physical memory. Memory management isnot visible
to application software. It is handled by the system software and processor hardware.

1.2.1 Segmentation

Segmentation was originally created as a method by which system software could isolate software
processes (tasks), and the data used by those processes, from one another in an effort to increase the
reliability of systems running multiple processes simultaneously.

The AMDG64 architecture is designed to support all forms of legacy segmentation. However, most
modern system software does not use the segmentation features availablein the legacy x86
architecture. Instead, system software typically handles program and dataisolation using page-level
protection. For this reason, the AM D64 architecture dispenses with multiple segments in 64-bit mode
and, instead, uses aflat-memory model. The elimination of segmentation allows new 64-bit system
softwareto be coded more simply, and it supports more efficient management of multi-processing than
ispossiblein the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and legacy mode. Here, segmentationisaform
of base memory-addressing that allows software and data to be relocated in virtual -address space off
of an arbitrary base address. Software and data can be relocated in virtual -address space using one or
more variable-sized memory segments. The legacy x86 architecture provides several methods of
restricting access to segments from other segments so that software and data can be protected from
interfering with each other.

In compatibility and legacy modes, up to 16,383 unique segments can be defined. The base-address
value, segment size (called alimit), protection, and other attributesfor each segment are containedin a
data structure called a segment descriptor. Collections of segment descriptors are held in descriptor
tables. Specific segment descriptors are referenced or selected from the descriptor table using a
segment selector register. Six segment-selector registers are available, providing accessto asmany as
Six segments at atime.

Figure 1-1 on page 6 shows an example of segmented memory. Segmentation is described in
Chapter 4, “ Segmented Virtual Memory.”

System-Programming Overview [AM D PUb“C Use] 5

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Virtual Address
Space

Effective Address

v

Descriptor Table

Selectors
cs T Limit 4@)
s | [T e | 3
ES
FS .
s b+ L. L Hmit
$s

A 4

Segment

|
3.
—
\ 4

v

Segment

v

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One specia case of segmented memory isthe flat-memory model. In the legacy
flat-memory model, all segment-base addresses have avalue of 0, and the segment limits are fixed at
4 Ghytes. Segmentation cannot be disabled but use of the flat-memory model effectively disables
segment tranglation. Theresult isavirtual address that equals the effective address. Figure 1-2 on
page 7 shows an exampl e of the flat-memory model.

Software running in 64-bit mode automatically uses the flat-memory model. In 64-bit mode, the
segment base istreated asif it were 0, and the segment limit isignored. Thisalows an effective
addresses to access the full virtual-address space supported by the processor.

System-Programming Overview

° [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Virtual Address
Space

Effective Address

\4

Virtual Address

Flat Segment

513-202.eps

Figure 1-2. Flat Memory Model

1.2.2 Paging

Paging allows software and data to be rel ocated in physi cal-address space using fixed-size blocks
called physical pages. The legacy x86 architecture supports three different physical-page sizes of

4 Kbytes, 2 Mbytes, and 4 Mbytes. Aswith segment trandation, access to physical pages by lesser-
privileged software can be restricted.

Page translation uses a hierarchical data structure called a page-trand ation table to trandlate virtual
pages into physical-pages. The number of levelsin the translation-table hierarchy can be asfew asone
or as many as four, depending on the physical-page size and processor operating mode. Translation
tables are aligned on 4-K byte boundaries. Physical pages must be aligned on 4-Kbyte, 2-Mbyte, or 4-
Mbyte boundaries, depending on the physical-page size.

Each tablein the trandation hierarchy isindexed by a portion of the virtual-address bits. The entry
referenced by the table index contains a pointer to the base address of the next-lower-level tablein the
trandation hierarchy. In the case of the lowest-level table, its entry points to the physical-page base
address. The physical page isthen indexed by the least-significant bits of the virtual addressto yield
the physical address.

Figure 1-3 on page 8 shows an example of paged memory with three levelsin the trand ation-table
hierarchy. Paging is described in Chapter 5, “Page Trand ation and Protection.”

System-Programming Overview [AMD Public Use] !

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Physical Address
Virtual Address Space

v

A
o
=0
~
K,
o
=
pd
a.
a
=
[9°3
193]
N

vy

— | | feeeeee-
Table 1 Table 2 Table 3

\ 4

Page Translation Tables
Physical Page

\ 4

Page Table Base Address

Figure 1-3. Paged Memory Model

Software running in long modeis required to have page transl ation enabl ed.

1.2.3 Mixing Segmentation and Paging

M emory-management software can combine the use of segmented memory and paged memory.
Because segmentation cannot be disabled, paged-memory management requires some minimum
initialization of the segmentation resources. Paging can be completely disabled, so segmented-
memory management does not require initialization of the paging resources.

Segments can range in size from a single byte to 4 Gbytesin length. It istherefore possible to map
multiple segmentsto asingle physical page and to map multiple physical pagesto a single segment.
Alignment between segment and physical-page boundariesis not required, but memory-management
software is simplified when segment and physical-page boundaries are aligned.

8 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The simplest, most efficient method of memory management is the flat-memory model. In the flat-
memory model, all segment base addresses have avalue of 0 and the segment limits are fixed at 4
Gbytes. The segmentation mechanismis still used each time amemory referenceis made, but because
virtual addresses are identical to effective addresses in this model, the segmentation mechanismis
effectively ignored. Tranglation of virtual (or effective) addressesto physical addresses takes place
using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses aflat, paged-memory model for memory
management. The 4 Gbyte segment limit isignored in 64-bit mode. Figure 1-4 shows an example of
thismodel.

Virtual Address Physical Address
Space Space
Effective Address > Virtual Address | — > I _P_hys_lc_al_ éqd_re_s_s -
Page Translation Tables
Page Frame
Flat Segment
L { Page Table Base Address

Figure 1-4. 64-Bit Flat, Paged-Memory Model

System-Programming Overview [AM D PUb“C Use] 9

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

1.2.4 Real Addressing

Real addressing isalegacy-mode form of address tranglation used in real mode. This simplified form
of addresstrandation is backward compatible with 8086-processor effective-to-physical address
trangdlation. In thismode, 16-bit effective addresses are mapped to 20-bit physical addresses, providing
a 1-Mbyte physical-address space.

Segment selectors are used in real-address trandlation, but not as an index into a descriptor table.
Instead, the 16-bit segment-sel ector value is shifted left by 4 bits to form a 20-bit segment-base
address. The 16-bit effective address is added to this 20-bit segment base addressto yield a 20-bit
physical address. If the sum of the segment base and effective address carries over into bit 20, that bit
can be optionally truncated to mimic the 20-bit address wrapping of the 8086 processor by using the
A20M# input signal to mask the A20 address bit.

A20 address bit masking should only be used real mode (see next section for information on real
mode). Use in other modes may result in address tranglation errors.

Real-address transl ation supports a 1-M byte physi cal-address space using up to 64K segments aligned
on 16-byte boundaries. Each segment is exactly 64 Kbyteslong. Figure 1-5 shows an example of real-
addresstranglation.

Selectors

(&

DS

ES

FS

Effective Address

GS

SS

19 0 19 0

A4 v

0000 : Effective Address Selector + 0000

Physical Address

Figure 1-5. Real-Address Memory Model

10 [AMD PUb“C Use] System-Programming Overview

AMDA

24593—Rev. 3.36—O0October 2020

1.3

Operating Modes

AMDG64 Technology

The legacy x86 architecture provides four operating modes or environments that support varying
forms of memory management, virtual-memory and physical-memory sizes, and protection:

* Red Mode.

* Protected Mode.

* Virtual-8086 Mode.
* System Management Mode.

The AMD®64 architecture supports al these legacy modes, and it adds a new operating mode called
long mode. Table 1-1 shows the differences between long mode and legacy mode. Software can move
between all supported operating modes as shown in Figure 1-6 on page 12. Each operating modeis
described in the following sections.

Table 1-1. Operating Modes
i Defaults! i
System Application . Register Maé::r)??um
Mode Software | Recompile | Address | Operand 2 Width
Required Required Size Size Extension)
(bits) (bits) (bits)
64-Bit yes 64 yes 64
Long Mode New 32
Mode3 o 64-bit OS 32
Compatibility no no 32
Mode 16 16
32 32 3
Protected Mode Legacy 16 16
Legacy |Virtual-8086 32-bit OS o o
Mode
Mode 16 16 32
Legacy
Red Mode 16-bit OS
Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions include access to the upper eight general-purpose and YMM/XMM registers, uniform access to lower 8
bits of all GPRs, and access to the upper 32 bits of the GPRs.
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

System-Programming Overview

[AMD Public Use]

11

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Long Mode

CS.L=1 SMIz#
64-bit r .(Compatibility

Mode Mode

RSM

CS.L=0

CS.1=0

EFERLME=1, CR4.PAE=1 CR0.PG=0

then CRO.PG=1 then EFER.LME=0
RSM SMIH
RSM SMIH
EFLAGS.VM=0 _ 5 Reset
Protected N Virtual
rotecte) ! e
Mode 4 Mode
EFLAGS.VM=1
SMIHE RSM

Reset ;'

System
Management
Mode

‘.. Reset _.--

Figure 1-6. Operating Modes of the AMDG64 Architecture

1.3.1 Long Mode

L ong mode consists of two submodes: 64-bit mode and compatibility mode. 64-bit mode supports
several new features, including the ability to address 64-bit virtual-address space. Compatibility mode
provides binary compatibility with existing 16-bit and 32-bit applications when running on 64-bit
system software.

Throughout this document, referencesto long mode refer collectively to both 64-bit mode and
compatibility mode. If afunction is specific to either 64-bit mode or compatibility mode, then those
specific names are used instead of the name long mode.

Before enabling and activating long mode, system software must first enable protected mode. The
process of enabling and activating long mode is described in Chapter 14, “ Processor Initialization and

12 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Long ModeActivation.” Long mode features are described throughout this document, where
applicable.

1.3.2 64-Bit Mode

64-bit mode, asubmode of long mode, provides support for 64-bit system software and applications by
adding the following features:
e 64-bit virtual addresses (processor implementations can have fewer).
e Accessto General Purpose Register bits 63:32
e Accessto additional registersthrough the REX, VEX, and XOPinstruction prefixes:
- eight additional GPRs (R8-R15)
- eight additional Streaming SIMD Extension (SSE) registers (YMM/XMM8-15)
e 64-hitinstruction pointer (RIP).
¢ New RIP-relative data-addressing mode.
* Flat-segment address space with single code, data, and stack space.

The mode is enabled by the system software on an individual code-segment basis. Although code
segments are used to enable and disable 64-bit mode, the legacy segmentation mechanismislargely
disabled. Page trandlation is required for memory management purposes. Because 64-bit mode
supports a 64-bit virtual-address space, it requires 64-bit system software and development tools.

In 64-bit mode, the default address size is 64 bits, and the default operand sizeis 32 bits. The defaults
can be overridden on an instruction-by-instruction basis using instruction prefixes. A new REX prefix
isintroduced for specifying a 64-bit operand size and the new registers.

1.3.3 Compatibility Mode

Compatibility mode, a submode of long mode, allows system software to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applicationsto run,
without recompilation, under 64-bit system software in long mode, as shown in Table 1-1 on page 11.

In compatibility mode, applications can only access the first 4 Gbytes of virtual-address space.
Standard x86 instruction prefixes toggle between 16-bit and 32-bit address and operand sizes.

Compatibility mode, like 64-bit mode, is enabled by system software on an individual code-segment
basis. Unlike 64-bit mode, however, segmentation functions the same asin the legacy-x86
architecture, using 16-bit or 32-bit protected-mode semantics. From an application viewpoint,
compatibility mode looks like alegacy protected-mode environment. From a system-software
viewpoint, the long-mode mechanisms are used for address translation, interrupt and exception
handling, and system data-structures.

System-Programming Overview [AM D PUb“C Use] 13

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

1.3.4 Legacy Modes

L egacy mode consists of three submodes: real mode, protected mode, and virtual-8086 mode.
Protected mode can be either paged or unpaged. L egacy mode preserves binary compatibility not only
with existing x86 16-bit and 32-bit applications but also with existing x86 16-bit and 32-bit system
software.

Real Mode. Inthismode, also called real-address mode, the processor supports a physical-memory
space of 1 Mbyte and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes). Interrupt
handling and address generation are nearly identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real modeisentered after reset or processor power-up. The mode is not supported when the processor
is operating in long mode because long mode requires that paged protected mode be enabled.

Protected Mode. Inthismode, the processor supports virtual-memory and physical-memory spaces
of 4 Gbytes and operand sizes of 16 or 32 bits. All segment translation, segment protection, and
hardware multitasking functions are available. System software can use segmentation to relocate
effective addressesin virtual-address space. If paging is not enabled, virtual addresses are equal to
physical addresses. Paging can be optionally enabled to allow translation of virtual addressesto
physical addresses and to use the page-based memory-protection mechanisms.

In protected mode, softwarerunsat privilegelevelsO, 1, 2, or 3. Typically, application software runs at
privilege level 3, the system software runsat privilegelevels0 and 1, and privilege level 2 isavailable
to system software for other uses. The 16-bit version of this mode wasfirst introduced in the 80286
Processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to run 16-bit real-mode softwareon a
virtualized-8086 processor. In this mode, software written for the 8086, 8088, 80186, or 80188
processor can run as a privilege-level-3 task under protected mode. The processor supports avirtual-
memory space of 1 Mbytes and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes),
and it uses real-mode address tranglation.

Virtual-8086 mode is enabled by setting the virtual-machine bit in the EFLAGS register
(EFLAGS.VM). EFLAGS.VM can only be set or cleared when the EFLAGS register isloaded from
the TSSasaresult of atask switch, or by executing an IRET instruction from privileged software. The
POPF instruction cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is operating in long mode. When long modeis
enabled, any attempt to enable virtual-8086 mode is silently ignored.

14 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

1.3.5 System Management Mode (SMM)

System management mode (SMM) is an operating mode designed for system-control activitiesthat are
typically transparent to conventional system software. Power management is one popular use for
system management mode. SMM is primarily targeted for use by platform firmware and specialized
low-level devicedrivers. The code and datafor SMM are stored in the SMM memory area, whichis
isolated from main memory by the SMM output signal.

SMM isentered by way of a system management interrupt (SM1). Upon recognizing an SMI, the
processor enters SMM and switches to a separate address space where the SMM handler islocated and
executes. In SMM, the processor supports rea-mode addressing with 4 Gbyte segment limits and
default operand, address, and stack sizes of 16 bits (prefixes can be used to override these defaults).

1.4 System Registers

Figure 1-7 on page 16 shows the system registers defined for the AM D64 architecture. System
software uses these registers to, among other things, manage the processor operating environment,
define system resource characteristics, and to monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only from privileged software.

Except for the descriptor-table registers and task register, the AMD64 architecture defines all system
registersto be 64 bitswide. The descriptor table and task registers are defined by the AMD64
architecture to include 64-bit base-address fields, in addition to their other fields.

Asshown in Figure 1-7 on page 16, the system registersinclude:

» Control Registers—Theseregistersare used to control system operation and some system features.
See “ System-Control Registers’ on page 41 for details.

» System-Flags Register—The RFLAGS register contains system-status flags and masks. It isalso
used to enable virtual-8086 mode and to control application accessto I/O devices and interrupts.
See “RFLAGS Register” on page 52 for details.

» Descriptor-Table Registers—These registers contain the location and size of descriptor tables
stored in memory. Descriptor tables hold segmentation data structures used in protected mode. See
“Descriptor Tables’” on page 77 for details.

» Task Register—Thetask register contains the location and size in memory of the task-state
segment. The hardware-multitasking mechanism uses the task-state segment to hold state
information for agiven task. The TSS a so holds other data, such asthe inner-level stack pointers
used when changing to ahigher privilegelevel. See “ Task Register” on page 349 for details.

» Debug Registers—Debug registers are used to control the software-debug mechanism, and to
report information back to a debug utility or application. See “ Debug Registers’ on page 370 for
details.

System-Programming Overview [AM D PUb“C Use] 15

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Control Registers :" Extended-Feature-Enable Register Memory-Typing Registers
CRO C EFER MTRRcap
CR2 : MTRRdefType
CR3 . System-Configuration Register MTRRphysBasen
CR4 b SYSCFG MTRRphysMaskn
CR8 : MTRRfixn
: System-Linkage Registers PAT
. STAR TOP_MEM
System-Flags Register AR TOF MENZ
RFLAGS
CSTAR o . :
SEMASK Performance-Monitoring Registers :
Debug Registers ' FS.base TsC
DRO GS.base PerfEvtSeln
DR1 KernelGSbase PerfCtrn
DR2 : SYSENTER_CS
DR3 : SYSENTER ESP Machine-Check Registers
DR6 : SYSENTER_EIP MCG_CAP
DR7 : MCG_STAT
Debug-Extension Registers MCG_CTL
Descriptor-Table Registers DebugCtl MCI_CTL
GDTR : LastBranchFromIP MC'—.STATUS
TR LastBranchTolP MC'_—ADDR
: LastintFromIP MCI_MISC
LDTR :
LastIntTolP

Task Register
TR

System_Registers_Diag.eps

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific registersincluded in the AMD64
architectural definition, and shown in Figure 1-7:

» Extended-Feature-Enable Register—The EFER register is used to enable and report status on
specia features not controlled by the CRn control registers. In particular, EFER is used to control
activation of long mode. See “Extended Feature Enable Register (EFER)” on page 56 for more
information.

16 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» System-Configuration Register—The SY SCFG register is used to enable and configure system-
bus features. See “ System Configuration Register (SY SCFG)” on page 61 for more information.

e System-Linkage Registers—These registers are used by system-linkage instructions to specify
operating-system entry points, stack locations, and pointersinto system-data structures. See “ Fast
System Call and Return” on page 162 for details.

* Memory-Typing Registers—Memory-typing registers can be used to characterize (type) system
memory. Typing memory gives system software control over how instructions and data are cached,
and how memory reads and writes are ordered. See“MTRRS’ on page 201 for details.

» Debug-Extension Registers—Theseregisters control additional software-debug reporting features.
See “Debug Registers’ on page 370 for details.

» Performance-Monitoring Registers—Performance-monitoring registers are used to count
processor and system events, or the duration of events. See “Performance Monitoring Counters’
on page 384 for more information.

» Machine-Check Registers—The machine-check registers control the response of the processor to
non-recoverable failures. They are also used to report information on such failures back to system
utilities designed to respond to such failures. See * Machine Check Architecture MSRS” on
page 283 for more information.

1.5 System-Data Structures

Figure 1-8 on page 18 shows the system-data structures defined for the AM D64 architecture. System-
data structures are created and maintained by system software for use by the processor when running
in protected mode. A processor running in protected mode uses these data structures to manage
memory and protection, and to store program-state information when an interrupt or task switch
OCCUrS.

System-Programming Overview [AM D PUbllC Use] 17

AMDAQ

AMDG64 Technology

Segment Descriptors (Contained in Descriptor Tables)

24593—Rev. 3.36—0ctober 2020

| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

...

Global-Descriptor Table

Interrupt-Descriptor Table

Task-State Segment

Local-Descriptor Table

Descriptor Gate Descriptor
Descriptor Gate Descriptor
Descriptor Gate Descriptor

...

...

Page-Map Level-4

Page-Directory Pointer

Page Directory

Descriptor

Descriptor

Descriptor

...

Figure 1-8. System-Data Structures

Asshown in Figure 1-8, the system-data structures include:

Descriptors—A descriptor providesinformation about a segment to the processor, such asits
location, size and privilege level. A special type of descriptor, called agate, isused to provide a
code selector and entry point for a software routine. Any number of descriptors can be defined, but
system software must at a minimum create a descriptor for the currently executing code segment
and stack segment. See L egacy Segment Descriptors’ on page 84, and “Long-Mode Segment
Descriptors’ on page 92 for complete information on descriptors.

Descriptor Tables—Asthe name implies, descriptor tables hold descriptors. The global -descriptor
table holds descriptors available to all programs, while alocal-descriptor table holds descriptors
used by asingle program. The interrupt-descriptor table holds only gate descriptors used by

18

[AMD Public Use]

System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

interrupt handlers. System software must initialize the global-descriptor and interrupt-descriptor
tables, while use of the local-descriptor table is optional. See “ Descriptor Tables” on page 77 for
more information.

» Task-State Segment—T he task-state segment is a special segment for holding processor-state
information for a specific program, or task. It also contains the stack pointers used when switching
to more-privileged programs. The hardware multitasking mechanism uses the state information in
the segment when suspending and resuming atask. Calls and interrupts that switch stacks cause
the stack pointersto be read from the task-state segment. System software must create at least one
task-state segment, even if hardware multitasking is not used. See “L egacy Task-State Segment”
on page 351, and “64-Bit Task State Segment” on page 355 for details.

» Page-Trandation Tables—Use of page trandation is optional in protected mode, but it isrequired
inlong mode. A four-level page-trandation data structure is provided to allow long-mode
operating systemsto translate a 64-bit virtual-address space into a 52-bit physical-address space.
L egacy protected mode can use two- or three-level page-trandlation data structures. See “ Page
Trandation Overview” on page 122 for more information on page translation.

1.6 Interrupts

The AMD®64 architecture provides a mechanism for the processor to automatically suspend (interrupt)
software execution and transfer control to an interrupt handler when an interrupt or exception occurs.
Aninterrupt handler is privileged software designed to identify and respond to the cause of an
interrupt or exception, and return control back to the interrupted software. Interrupts can be caused
when system hardware signals an interrupt condition using one of the external-interrupt signals on the
processor. | nterrupts can also be caused by software that executes an interrupt instruction. Exceptions
occur when the processor detects an abnormal condition as aresult of executing an instruction. The
term “interrupts’ as used throughout this volume includes both interrupts and exceptions when the
distinction is unnecessary.

System software not only sets up the interrupt handlers, but it must also create and initialize the data
structures the processor uses to execute an interrupt handler when an interrupt occurs. The data
structures include the code-segment descriptorsfor the interrupt-handler software and any data-
segment descriptors for data and stack accesses. I nterrupt-gate descriptors must also be supplied.
Interrupt gates point to interrupt-handler code-segment descriptors, and the entry point in an interrupt
handler. Interrupt gates are stored in the interrupt-descriptor table. The code-segment and data-
segment descriptors are stored in the global -descriptor table and, optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt vector to find the appropriate interrupt gate
in the interrupt-descriptor table. The gate pointsto the interrupt-handler code segment and entry point,
and the processor transfers control to that location. Before invoking the interrupt handler, the
processor saves information required to return to the interrupted program. For details on how the
processor transfers control to interrupt handlers, see*Legacy Protected-Mode Interrupt Control
Transfers’ on page 253, and “Long-Maode Interrupt Control Transfers’ on page 264.

System-Programming Overview [AM D PUb“C Use] 19

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 1-2 shows the supported interrupts and exceptions, ordered by their vector number. Refer to
“Vectors’ on page 228 for acomplete description of each interrupt, and a description of the interrupt
mechanism.

Table 1-2. Interrupts and Exceptions

Vector Description
0 Integer Divide-by-Zero Exception
1 Debug Exception
2 Non-Maskable-Interrupt
3 Breakpoint Exception (INT 3)
4 Overflow Exception (INTO instruction)
5 Bound-Range Exception (BOUND instruction)
6 Invalid-Opcode Exception
7 Device-Not-Available Exception
8 Double-Fault Exception
9 Coprocessor-Segment-Overrun Exception (reserved in AMDG64)
10 Invalid-TSS Exception
11 Segment-Not-Present Exception
12 Stack Exception
13 General-Protection Exception
14 Page-Fault Exception
15 (Reserved)
16 x87 Floating-Point Exception
17 Alignment-Check Exception
18 Machine-Check Exception
19 SIMD Floating-Point Exception
21 Control-Protection Exception
0-255 Interrupt Instructions
0-255 Hardware Maskable Interrupts
1.7 Additional System-Programming Facilities

1.7.1 Hardware Multitasking

A task isany program that the processor can execute, suspend, and later resume executing at the point
of suspension. During thetime atask is suspended, other tasks are allowed to execute. Each task hasits
own execution space, consisting of a code segment, data segments, and a stack segment for each
privilege level. Tasks can also have their own virtual-memory environment managed by the page-
trand ation mechanism. The state information defining this execution space is stored in the task-state
segment (TSS) maintained for each task.

System-Programming Overview

20 [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Support for hardware multitasking is provided by implementations of the AMDG64 architecture when
software is running in legacy mode. Hardware multitasking provides automated mechanisms for
switching tasks, saving the execution state of the suspended task, and restoring the execution state of
the resumed task. When hardware multitasking is used to switch tasks, the processor takesthe
following actions:

» Theprocessor automatically suspends execution of the task, allowing any executing instructionsto
complete and save their results.

» Theexecution state of atask issaved inthetask TSS.
» Theexecution state of anew task isloaded into the processor from its TSS.
» Theprocessor begins executing the new task at the location specified in the new task TSS.

Use of hardware-multitasking featuresis optional in legacy mode. Generally, modern operating
systems do not use the hardware-multitasking features, and instead perform task management entirely
in software. Long mode does not support hardware multitasking at all.

Whether hardware multitasking is used or not, system software must create and initialize at least one
task-state segment data-structure. This requirement holds for both long-mode and legacy-mode
software. The single task-state segment holds critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in Chapter 12, “ Task Management,” along
with afull description of the requirements that must be met in initializing atask-state segment when
hardware multitasking is not used.

1.7.2 Machine Check

Implementations of the AM D64 architecture support the machine-check exception. This exceptionis
useful in system applicationswith stringent requirementsfor reliability, availability, and serviceability.
The exception allows specialized system-software utilitiesto report hardware errorsthat are generally
severe and non-recoverable. Providing the capability to report such errors can allow complex system

problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9, “Machine Check Architecture.” Much of the
error-reporting capabilities isimplementation dependent. For more information, devel opers of
machine-check error-reporting software should refer to the BIOSand Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual or applicable to your product.

1.7.3 Software Debugging

A software-debugging mechanism is provided in hardware to hel p software devel opers quickly isolate
programming errors. This capability can be used to debug system software and application software
alike. Only privileged software can access the debugging facilities. Generally, software-debug support
isprovided by a privileged application program rather than by the operating system itself.

The facilities supported by the AMDG64 architecture allow debugging software to perform the
following:

System-Programming Overview [AM D PUbllC Use] 21

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Set breakpoints on specific instructions within a program.

* Set breakpoints on an instruction-address match.

» Set breakpoints on a data-address match.

» Set breakpoints on specific 1/O-port addresses.

» Set breakpoints to occur on task switches when hardware multitasking is used.
» Single step an application instruction-by-instruction.

» Single step only branches and interrupts.

» Record ahistory of branches and interrupts taken by a program.

The debugging facilities are fully described in “ Software-Debug Resources’ on page 370. Some
processors provide additional, implementation-specific debug support. For more information, refer to
the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product.

1.7.4 Performance Monitoring

For many software devel opers, the ability to identify and eliminate performance bottlenecks from a
program is nearly asimportant as quickly isolating programming errors. Implementations of the
AMD®64 architecture provide hardware performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-privileged software can access the
performance monitoring facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of events, or the duration of events.
Performance-analysis software can use the data to cal culate the frequency of certain events, or thetime
spent performing specific activities. That information can be used to suggest areas for improvement
and the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in “ Performance Monitoring Counters’ on
page 384. The specific eventsthat can be monitored are generally implementation specific. For more
information, refer to the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

22 [AMD PUb“C Use] System-Programming Overview

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

2 x86 and AMDG64 Architecture Differences

The AMDG64 architecture is designed to provide full binary compatibility with all previousAMD
implementations of the x86 architecture. This chapter summarizes the new features and architectural
enhancements introduced by the AM D64 architecture, and compares those features and enhancements
with previous AMD x86 processors. Most of the new capabilitiesintroduced by the AMD64
architecture are available only in long mode (64-bit mode, compatibility mode, or both). However,
some of the new capabilities are also available in legacy mode, and are mentioned where appropriate.

The material throughout this chapter assumes the reader has a solid understanding of the x86
architecture. For those who are unfamiliar with the x86 architecture, please read the remainder of this
volume before reading this chapter.

2.1 Operating Modes

See " Operating Modes” on page 11 for acompl ete description of the operating modes supported by the
AMDG64 architecture.

2.1.1 Long Mode

The AMDG64 architecture introduces long mode and its two sub-modes. 64-bit mode and compatibility
mode.

64-Bit Mode. 64-bit mode providesfull support for 64-bit system software and applications. The new
features introduced in support of 64-bit mode are summarized throughout this chapter. To use 64-bit
mode, a 64-bit operating system and tool chain are required.

Compatibility Mode. Compatibility mode allows 64-bit operating systems to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applicationsto run,
without recompilation, under control of a 64-bit operating system in long mode. The architectural
enhancements introduced by the AM D64 architecture that support compatibility mode are
summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following two operating modes:

* \irtual-8086 Mode—The virtual-8086 mode bit (EFLAGS.VM) is ignored when the processor is
running in long mode. When long mode is enabled, any attempt to enable virtual-8086 mode is
silently ignored. System software must |eave long mode in order to use virtual-8086 mode.

* Real Mode—Real mode is not supported when the processor is operating in long mode because
long mode requires that protected mode be enabled.

2.1.2 Legacy Mode

The AM D64 architecture supports a pure x86 legacy mode, which preserves binary compatibility not
only with existing 16-bit and 32-bit applications but also with existing 16-bit and 32-bit operating

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 23

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

systems. L egacy mode supports real mode, protected mode, and virtual-8086 mode. A reset aways
places the processor in legacy mode (real mode), and the processor continuesto run in legacy mode
until system software activates |long mode. New features added by the AMD®64 architecture that are
supported in legacy mode are summarized in this chapter.

2.1.3 System-Management Mode

The AM D64 architecture supports system-management mode (SMM). SMM can be entered from both
long mode and legacy mode, and SMM can return directly to either mode. The following differences
exist between the support of SMM inthe AM D64 architecture and the SMM support found in previous
processor generations:

* The SMRAM state-save area format is changed to hold the 64-bit processor state. This state-save
areaformat is used regardless of whether SMM is entered from long mode or legacy mode.

» Theauto-halt restart and 1/O-instruction restart entriesin the SMRAM state-save area are one byte
instead of two bytes.

* The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

* New conditions exist that can cause a processor shutdown while exiting SMM.

« SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

See Chapter 10, “ System-Management Mode,” for more information on the SMM differences.

2.2 Memory Model

The AMD64 architecture provides enhancements to the legacy memory model to support very large
physical-memory and virtual-memory spaces while in long mode. Some of this expanded support for
physical memory isavailable in legacy mode.

2.2.1 Memory Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded to 64 address bitsin long mode.
Thisallows up to 16 exabytes of virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded to 52 address bitsin long
mode and legacy mode. This allows up to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging and the page-size extensions.

Note that given processor may implement |essthan the architecturally-defined physical address size of
52 bits.

24 [AM D PUb“C Uéiée] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Effective Addressing. The effective-address length is expanded to 64 bitsin long mode. An
effective-address cal culation uses 64-bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses remain 32 bitslong.

2.2.2 Page Translation

The AMDG64 architecture defines an expanded page-trangl ation mechanism supporting trandlation of a
64-bit virtual addressto a’52-bit physical address. See*Long-Mode Page Translation” on page 134 for
detailed information on the enhancements to page trandlation in the AM D64 architecture. The
enhancements are summarized below.

Physical-Address Extensions (PAE). The AMD64 architecture requires physical-address
extensionsto be enabled (CR4.PAE=1) before long modeis entered. When PAE is enabled, all paging
data-structures are 64 bits, allowing referencesinto the full 52-bit physi cal-address space supported by
the architecture.

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) areignored in long mode. Long
mode does not support the 4-Mbyte page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The AMDG64 architecture extends the page-trandlation data structuresin
support of long mode. The extensions are:

* Page-map level-4 (PML4)—Long mode defines a new page-trandation data structure, the PML4
table. The PML4 table sits at the top of the page-trandation hierarchy and references PDP tables.

» Page-directory pointer (PDP)—The PDPtables in long mode are expanded from 4 entries to 512
entries each.

e Page-directory pointer entry (PDPE)—Previously undefined fields within the legacy-mode PDPE
are defined by the AMDG64 architecture.

CR3 Register. The CR3 register isexpanded to 64 bitsfor use in long-mode page trandation. When
long mode is active, the CR3 register references the base address of the PML4 table. In legacy mode,
the upper 32 bits of CR3 are masked by the processor to support legacy page translation. CR3
references the PDP base-address when physical-address extensions are enabled, or the page-directory
table base-address when physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take advantage of the enhancements
made to the physi cal-address extension (PAE) support and page-size extension (PSE) support. The
four-level page translation mechanism introduced by long mode is not available to legacy-mode
software.

* PAE—When physical-address extensions are enabled (CR4.PAE=1), the AMDG64 architecture
allows legacy-mode software to load up to 52-bit (maximum size) physical addressesinto the PDE
and PTE. Note that addresses are expanded to the maximum physical address size supported by the
implementation.

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 25

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» PSE—The use of page-size extensions allows legacy mode software to define 4-Mbyte pages
using the 32-bit page-trand ation tables. When page-size extensions are enabled (CR4.PSE=1), the
AMD®64 architecture enhances the 4-Mbyte PDE to support 40 physical-address bits.

See “Legacy-Mode Page Translation” on page 126 for more information on these enhancements.

2.2.3 Segmentation

In long mode, the effects of segmentation depend on whether the processor isrunning in compatibility
mode or 64-bit mode:

* In compatibility mode, segmentation functionsjust asit doesin legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

» 64-bit mode requires aflat-memory model for creating aflat 64-bit virtual-address space. Much of
the segmentation capability present in legacy mode and compatibility mode is disabled when the
processor isrunning in 64-bit mode.

The differences in the segmentation model as defined by the AMDG64 architecture are summarized in
the following sections. See Chapter 4, “ Segmented Virtual Memory,” for athorough description of
these differences.

Descriptor-Table Registers. Inlong mode, the base-address portion of the descriptor-table registers
(GDTR, IDTR, LDTR, and TR) are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit mode (using the LGDT, LIDT, LLDT, and
LTR instructions, respectively). However, thefull 64-bit base addressisused by aprocessor runningin
compatibility mode (in addition to 64-bit mode) when making a reference into adescriptor table.

A processor running in legacy mode can only load the low 32 bits of the base address, and the high 32
bits are ignored when references are made to the descriptor tables.

Code-Segment Descriptors. The AMD64 architecture defines anew code-segment descriptor
attribute, L (long). In compatibility mode, the processor treats code-segment descriptorsasit doesin
legacy mode, with the exception that the processor recognizesthe L attribute. If a code descriptor with
L=1 isloaded in compatibility mode, the processor |eaves compatibility mode and enters 64-bit mode.
In legacy mode, the L attribute is reserved.

Thefollowing differences exist for code-segment descriptorsin 64-bit mode only:

* TheCSbase-addressfield isignored by the processor.

e TheCSlimit field isignored by the processor.

* Only the L (long), D (default size), and DPL (descriptor-privilege level) fields are used by the
processor in 64-bit mode. All remaining attributes are ignored.

Data-Segment Descriptors. Thefollowing differences exist for data-segment descriptorsin 64-bit

mode only:

e« TheDS, ES, and SS descriptor base-address fields are ignored by the processor.

26 [AM D PUb“C Uéiée] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» TheFSand GS descriptor base-address fields are expanded to 64 bits and used in effective-address
calculations. The 64 bits of base address are mapped to model-specific registers (MSRs), and can
only beloaded using the WRM SR instruction.

» Thelimit fields and attribute fields of all data-segment descriptors (DS, ES, FS, GS, and SS) are
ignored by the processor.

In compatibility mode, the processor treats data-segment descriptors asit doesin legacy mode.
Compatibility mode ignores the high 32 bits of base address in the FS and GS segment descriptors
when calculating an effective address.

System-Segment Descriptors. In64-bit mode only, The LDT and TSS system-segment descriptor
formats are expanded by 64 bits, alowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptorsinto the LDTR and TR registers, respectively, from
64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT and TSS system-segment descriptors
are unchanged. Also, unlike code-segment and data-segment descriptors, system-segment descriptor
limits are checked by the processor in long mode.

Some legacy mode LDT and TSS type-field encodings areillegal in long mode (both compatibility
mode and 64-bit mode), and others are redefined to new types. See* System Descriptors’ on page 94
for additional information.

Gate Descriptors. Thefollowing differences exist between gate descriptorsin long mode (both
compatibility mode and 64-bit mode) and in legacy mode:

* Inlong mode, all 32-bit gate descriptors are redefined as 64-bit gate descriptors, and are expanded
to hold 64-bit offsets. The length of a gate descriptor in long mode istherefore 128 bits (16 bytes),
versus the 64 bits (8 bytes) in legacy mode.

» Some type-field encodings are illegal in long mode, and others are redefined to new types. See
“Gate Descriptors’ on page 96 for additional information.

» The interrupt-gate and trap-gate descriptors define a new field, called the interrupt-stack table
(IST) field.

2.3 Protection Checks

The AMD64 architecture makes the following changes to the protection mechanism in long mode:

» The page-protection-check mechanism is expanded in long mode to include the U/S and R/W
protection bits stored in the PM L4 entries and PDP entries.

» Severa system-segment types and gate-descriptor typesthat arelegal in legacy mode areillegal in
long mode (compatibility mode and 64-bit mode) and fail type checks when used in long mode.

* Segment-limit checks are disabled in 64-bit mode for the CS, DS, ES, FS, GS, and SS segments.
Segment-limit checks remain enabled for the LDT, GDT, IDT and TSS system segments.

All segment-limit checks are performed in compatibility mode.

x86 and AMD64 Architecture Differer[:ﬁjvl D PUbllC Use] 27

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Code and data segments used in 64-bit mode are treated as both readable and writable.

See “Page-Protection Checks’ on page 151 and “ Segment-Protection Overview” on page 99 for
detailed information on the protection-check changes.

2.4 Registers

The AMDG64 architecture adds additional registers to the architecture, and in many cases expands the
size of existing registersto 64 bits. The 80-bit floating-point stack registers and their overlaid 64-bit
MMX™ registers are not modified by the AM D64 architecture.

2.4.1 General-Purpose Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits wide, and eight additional GPRs are
available. The GPRs are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new R8-R15
registers. To access the full 64-bit operand size, or the new R8-R15 registers, an instruction must
include anew REX instruction-prefix byte (see “REX Prefixes’ on page 29 for asummary of this
prefix).

In compatibility and legacy modes, the GPRs consist only of the eight legacy 32-bit registers. All
legacy rules apply for determining operand size.

2.4.2 YMM/XMM Registers

In 64-bit mode, eight additional Y MM/XMM registers are available, Y MM/XMM8-15. A REX
instruction prefix is used to access these registers. In compatibility and legacy modes, only registers
YMM/XMMO-7 are accessible.

2.4.3 Flags Register

Theflags register is expanded to 64 bits, and is called RFLAGS. All 64 bits can be accessed in 64-bit
mode, but the upper 32 bits are reserved and always read back as zeros. Compatibility mode and
legacy mode can read and write only the lower-32 bits of RFLAGS (thelegacy EFLAGS).

2.4.4 Instruction Pointer

In long mode, the instruction pointer is extended to 64 bits, to support 64-bit code offsets. This 64-bit
instruction pointer iscalled RIP.

2.4.5 Stack Pointer

In 64-bit mode, the size of the stack pointer, RSP, is always 64 bits. The stack size is not controlled by
abit in the SS descriptor, asit isin compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for implicit stack references.

28 [AM D PUb“C Uéiée] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

2.4.6 Control Registers

The AMDG64 architecture defines several enhancementsto the control registers (CRn). In long mode,
all control registers are expanded to 64 bits, although the entire 64 bits can be read and written only
from 64-bit mode. A new control register, the task-priority register (CR8 or TPR) isadded, and can be
read and written from 64-bit mode. Last, the function of the page-enable bit (CRO.PG) is expanded.
When long mode is enabled, the PG bit is used to activate and deactivate long mode.

2.4.7 Debug Registers

Inlong mode, all debug registers are expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. Expanded register encodings for the decode registers allow up to eight
new registersto be defined (DR8-DR15), although presently those registers are not supported by the
AMDG64 architecture.

2.4.8 Extended Feature Register (EFER)

The EFER is expanded by the AMD64 architecture to include along-mode-enable bit (LME), and a
long-mode-active bit (LMA). These new bits can be accessed from legacy mode and long mode.

2.4.9 Memory Type Range Registers (MTRRS)

Thelegacy MTRRs are architecturally defined as 64 bits, and can accommodate the maximum 52-bit
physical address allowed by the AMDG64 architecture. From both long mode and legacy mode,
implementations of the AMDG64 architecture reference the entire 52-bit physical-address val ue stored
inthe MTRRs. Long mode and legacy mode system software can update all 64 bits of the MTRRsto
manage the expanded physical-address space.

2.4.10 Other Model-Specific Registers (MSRS)

Severa other M SRs have fields holding physical addresses. Examplesinclude the APIC-base register
and top-of-memory register. Generally, any model-specific register that contains a physical addressis
defined architecturally to be 64 bits wide, and can accommodate the maximum physical-address size
defined by the AMDG64 architecture. When physical addresses are read from M SRs by the processor,
the entire valueis read regardless of the operating mode. In legacy implementations, the high-order
MSR bits are reserved, and software must write those values with zeros. In legacy mode on AMD64
architecture implementations, software can read and write al supported high-order M SR bits.

2.5 Instruction Set

2.5.1 REX Prefixes

REX prefixes are used in 64-bit mode to:

» Specify the new GPRsand YMM/XMM registers.
e Specify a64-hit operand size.

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 29

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Specify additional control registers. One additional control register, CRS, is defined in 64-bit
mode.

« Specify additional debug registers (although none are currently defined).

Not all instructions require a REX prefix. The prefix isnecessary only if an instruction references one
of the extended registers or uses a 64-hit operand. If aREX prefix isused when it hasno meaning, itis
ignored.

Default 64-Bit Operand Size. In64-bit mode, two groups of instructions have a default operand size
of 64 bits and thus do not need aREX prefix for this operand size:

* Near branches.

« All ingtructions, except far branches, that implicitly reference the RSP. See “Instructions that
Reference RSP’ on page 31 for additional information.

2.5.2 Segment-Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override prefixes have no effect. These four prefixes
areno longer treated as segment-override prefixesin the context of multiple-prefix rules. Instead, they
aretreated as null prefixes.

The FS and GS segment-override prefixes are treated as segment-override prefixes in 64-bit mode.
Use of the FS and GS prefixes cause thelr respective segment basesto be added to the effective address
calculation. See*FSand GS Registersin 64-Bit Mode”’ on page 76 for additional information on using
these segment registers.

2.5.3 Operands and Results

The AMD®64 architecture provides support for using 64-bit operands and generating 64-bit results
when operating in 64-bit mode.

Operand-Size Overrides. In64-bit mode, the default operand sizeis 32 hits. A REX prefix can be
used to specify a 64-bit operand size. Software uses alegacy operand-size (66h) prefix to toggleto 16-
bit operand size. The REX prefix takes precedence over the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit operations with a GPR
destination, the processor zero-extends the 32-bit result into the full 64-bit destination. Both 8-bit and
16-bit operations on GPRs preserve all unwritten upper bits of the destination GPR. Thisis consistent
with legacy 16-bit and 32-bit semantics for partial-width results.

2.5.4 Address Calculations

The AMD®64 architecture modifies aspects of effective-address cal culation to support 64-bit mode.
These changes are summarized in the following sections. See “Memory Addressing” in Volume 1 for
details.

30 [AM D PUbllC U§%ﬁ and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Address-Size Overrides. In64-bit mode, the default-address sizeis 64 bits. The address size can be
overridden to 32 bits by using the address-size prefix (67h). 16-bit addresses are not supported in 64-
bit mode. In compatibility mode and legacy mode, address-size overrides function the same asin x86
legacy architecture.

Displacements and Immediates. Generally, displacement and immediate valuesin 64-bit mode are
not extended to 64 bits. They are till limited to 32 bits and are sign extended during effective-address
calculations. In 64-bit mode, however, support is provided for some 64-bit displacement and
immediate forms of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16-bit and 32-bit address calculations are zero-
extended in long mode to form 64-bit addresses. Address calculations arefirst truncated to the
effective-address size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result isthen zero-extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative (instruction-pointer relative)
addressing, isimplemented in 64-bit mode. The effective addressisformed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that Reference RSP

With the exception of far branches, al instructionsthat implicitly reference the 64-hit stack pointer,
RSP, default to a 64-bit operand size in 64-bit mode (see Table 2-1 for alisting). Pushes and pops of
32-bit stack values are not possible in 64-bit mode with these instructions, but they can be overridden
to 16 bits.

Table 2-1. Instructions That Reference RSP

Mnemonic O(g;c))(()je Description
ENTER c8 Create Procedure Stack Frame
LEAVE C9 Delete Procedure Stack Frame
POP reg/mem 8F/0 Pop Stack (register or memory)
POPreg 58-5F Pop Stack (register)
POPFS OFA1l Pop Stack into FS Segment Register
POP GS OFA9 Pop Stack into GS Segment Register
POPF, POPFD, POPFQ 9D Pop to rFLAGS Word, Doubleword, or Quadword
PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF/6 Push onto Stack (register or memory)
PUSH reg 50-57 Push onto Stack (register)
PUSH FS OFAO Push FS Segment Register onto Stack
PUSH GS OF A8 Push GS Segment Register onto Stack
PUSHF, PUSHFD, PUSHFQ 9C Push rFLAGS Word, Doubleword, or Quadword onto Stack

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 31

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

2.5.6 Branches

The AMDG64 architecture expands two branching mechanisms to accommodate branchesin the full
64-bit virtual-address space:

* In64-bit mode, near-branch semantics are redefined.
* Inboth 64-bit and compatibility modes, a 64-bit call-gate descriptor is defined for far calls.

In addition, enhancements are made to the legacy SY SCALL and SY SRET instructions.

Near Branches. In64-bit mode, the operand size for all near branches defaultsto 64 bits (see
Table 2-2 for alisting). Therefore, these instructions update the full 64-bit RIP without the need for a
REX operand-size prefix. The following aspects of near branches default to 64 bits:

» Truncation of the instruction pointer.

» Sizeof astack pop or stack push, resulting fromaCALL or RET.

» Sizeof astack-pointer increment or decrement, resulting froma CALL or RET.
» Sizeof operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bitsin 64-bit mode.

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic O(ﬂ(;)(()je Description
CALL E8, FF/2 Call Procedure Near
Jec many Jump Conditional Near
IMP E9, EB, FF/4 | Jump Near
LOOP E2 Loop
LOOPcc EO, E1 Loop Conditional
RET C3,C2 Return From Call (near)

The address size of near branchesis not forced in 64-bit mode. Such addresses are 64 bits by defauilt,
but they can be overridden to 32 bits by a prefix.

The size of the displacement field for relative branchesis still limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the 32-bit call-gate
descriptor type asa64-bit call-gate descriptor and expandsthe call-gate descriptor sizeto hold a 64-hit
offset. The long-mode call-gate descriptor alows far branchesto reference any location in the
supported virtual-address space. In long mode, the call-gate mechanism is changed as follows:

e Inlong mode, CALL and JMP instructions that reference call-gates must reference 64-bit call
gates.

* A 64-bit call-gate descriptor must reference a 64-bit code-segment.

32 [AM D PUb“C Uéiée] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» When acontrol transfer is made through a 64-bit call gate, the 64-bit target addressis read from the
64-bit call-gate descriptor. The base addressin the target code-segment descriptor isignored.

Stack Switching. Automatic stack switching isalso modified when a control transfer occursthrough
acall gatein long mode:

» Thetarget-stack pointer read from the TSSisa64-bit RSPvalue.

* The SSregister is loaded with a null selector. Setting the new SS selector to null allows nested
control transfers in 64-bit mode to be handled properly. The SS.RPL value is updated to remain
consistent with the newly loaded CPL value.

» Thesize of pushes onto the new stack is modified to accommodate the 64-bit RIP and RSP values.
» Automatic parameter copying is not supported in long mode.

Far Returns. Inlong mode, far returns can load anull SS selector from the stack under the following
conditions:

e Thetarget operating modeis 64-bit mode.
* Thetarget CPL<3.

Allowing RET to load SSwith anull selector under these conditions makesit possible for the
processor to unnest far CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not supported in long mode.

Branches to 64-Bit Offsets. Becauseimmediate valuesare generally limited to 32 bits, the only way
afull 64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason,
direct forms of far branches are eliminated from the instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The AMD®64 architecture expands the function of the legacy
SYSCALL and SY SRET instructionsin long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIPfor the instructions when they are executed in long
mode. The legacy STAR register is not expanded in long mode. See “SY SCALL and SYSRET” on
page 163 for additional information.

SWAPGS Instruction. The AMDG64 architecture provides the SWAPGS instruction as afast method
for system software to load a pointer to system data-structures. SWAPGS isvalid only in 64-bit mode.
An undefined-opcode exception (#UD) occursif software attempts to execute SWAPGS in legacy
mode or compatibility mode. See “ SWAPGS Instruction” on page 165 for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SY SEXIT instructionsareinvalidin
long mode, and result in aninvalid opcode exception (#UD) if software attemptsto use them. Software
should use the SY SCALL and SY SRET instructions when running in long mode. See “SY SENTER
and SY SEXIT (Legacy Mode Only)” on page 165 for additional information.

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 33

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

2.5.7 NOP Instruction

The legacy x86 architecture commonly uses opcode 90h as a one-byte NOP. In 64-bit mode, the
processor treats opcode 90h specially in order to preserve this NOP definition. Thisis necessary
because opcode 90h is actually the XCHG EAX, EAX instruction in the legacy architecture. Without
specia handling in 64-bit mode, the instruction would not be atrue no-operation. Therefore, in 64-bit
mode the processor treats opcode 90h (the legacy XCHG EAX, EAX instruction) asatrue NOP,
regardless of aREX operand-size prefix.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unlessa
64-bit operand sizeis specified using aREX prefix byte, using the two-byte form of XCHG to
exchange aregister with itself does not result in ano-operation, because the default operation sizeis 32
bitsin 64-bit mode.

2.5.8 Single-Byte INC and DEC Instructions

In 64-bit mode, the legacy encodingsfor the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values. The functionality of these INC and DEC
instructionsis still available, however, using the ModRM forms of those instructions (opcodes FF /0
and FF/1). See“Single-Byte INC and DEC Instructionsin 64-Bit Mode” in Volume 3 for additional
information.

2.5.9 MOVSXD Instruction

MOV SXD isanew instruction in 64-bit mode (the legacy ARPL instruction opcode, 63h, is
reassigned as the MOV SXD opcode). It reads afixed-size 32-bit source operand from aregister or
memory and (if aREX prefix isused with theinstruction) sign-extendsthe valueto 64 bits. MOV SXD
is analogous to the MOV SX instruction, which sign-extends abyte to aword or aword to a
doubleword, depending on the effective operand size. See the instruction reference page for the

MOV SXD instruction in Volume 3 for additional information.

2.5.10 Invalid Instructions

Table 2-3 listsinstructionsthat areillegal in 64-bit mode. Table 2-4 on page 35 lists instructions that
areinvalidinlong mode (both compatibility mode and 64-bit mode). Attempted use of these
instructions causes an invalid-opcode exception (#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode

Mnemonic Opcode (hex) Description
AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds
CALL (far) 9A Procedure Call Far (absolute)

34 [AM D PUb“C Uéiée] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic Opcode (hex) Description
DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LDS C5 Load DS Segment Register
LES c4 Load ES Segment Register
POPDS 1F Pop Stack into DS Segment
POPES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS OE Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSH ES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA, PUSHAD 60 Push All GPR Words or Doublewords onto Stack
zi%%rga;ﬁ;z; 82 Redundant encoding of groupl Eb,Ib opcodes
(SL'JAr;Iagcument ed) D6 Set AL According to CF

Table 2-4. Invalid Instructions in Long Mode

M nemonic Opcode (hex) Description
SYSENTER OF 34 System Call
SYSEXIT OF 35 System Return

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 35

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

2.5.11 Reassignhed Opcodes

Table 2-5 below lists opcodes that are assigned functionsin 64-bit mode that differ from their legacy
functions.

Table 2-5. Opcodes Reassigned in 64-Bit Mode

Opcode (hex) Compatibility and L egacy 64-Bit Mode
M odes
63 ARPL—ACdjust Requestor MOV SXD—Move Doubleword
Privilege Level with Sign Extension
DEC—Decrement by 1 .
40-4F INC—Increment by 1 REX Prefix
Note: Two-byte versions of DEC and INC are still available in 64-bit mode.

2.5.12 FXSAVE and FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and restore the entire 128-bit media
(XMM), 64-bit media, and x87 instruction-set environment during a context switch. The AMD64
architecture modifiesthe memory format used by theseinstructionsin order to save and restore the fulll
64-bit instruction and data pointers, as well asthe XMM8-15 registers. Selection of the 32-bit legacy
format or the expanded 64-bit format is accomplished by using the corresponding operand size with
the FXSAVE and FXRSTOR instructions. When 64-bit software executesan FXSAVE and FXRSTOR
with a 32-bit operand size (no operand-size override) the 32-bit legacy format is used. When 64-bit
software executes an FXSAVE and FXRSTOR with a64-bit operand size, the 64-bit format is used.

For more information on the save areaformats, see Section 11.4.4, “ Saving Media and x87 Execution
Unit State,” on page 326

If thefast-FX SAVE/FXRSTOR (FFXSR) featureisenabled in EFER, FX SAV E and FXRSTOR do not
save or restore the XMMO0-15 registers when executed in 64-bit mode at CPL 0. The x87 environment
and MXCSR are saved whether fast-FX SAVE/FXRSTOR is enabled or not. The fast-
FXSAVE/FXRSTOR feature has no effect on FXSAVE/FXRSTOR in non 64-bit mode or when CPL >
0.

Software can use the CPUID instruction to determine whether the fast-FX SAVE/FXRSTOR featureis
available (CPUID Fn8000_0001h EDX[FFXSR]). For information on using the CPUID instruction to
obtain processor feature information, see Section 3.3, “Processor Feature Identification,” on page 66.

2.6 Interrupts and Exceptions

When a processor is running in long mode, an interrupt or exception causes the processor to enter 64-
bit mode. All long-mode interrupt handlers must be implemented as 64-bit code. The AMD64
architecture expands the legacy interrupt-processing and exception-processing mechanism to support

36 [AM D PUbllC U§%ﬁ and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

handling of interrupts by 64-bit operating systems and applications. The changes are summarized in
the following sections. See“Long-Mode Interrupt Control Transfers’ on page 264 for detailed
information on these changes.

2.6.1 Interrupt Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain 64-bit mode interrupt-gate or trap-gate

descriptorsfor al interrupts or exceptions that can occur while the processor is running in long mode.
Task gates cannot be used in the long-mode IDT, because control transfers through task gates are not

supported in long mode. In long mode, the IDT index isformed by scaling the interrupt vector by 16.

Inlegacy protected mode, the IDT isindexed by scaling the interrupt vector by eight.

2.6.2 Stack Frame Pushes

Inlegacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-
frame pushes, and SS:eSPis pushed only on a CPL change. Inlong mode, the size of interrupt stack-
frame pushesisfixed at eight bytes, because interrupts are handled in 64-bit mode. Long mode
interrupts also cause SS:RSP to be pushed unconditionally, rather than pushing only on a CPL change.

2.6.3 Stack Switching

L egacy mode provides a mechanism to automatically switch stack framesin response to an interrupt.
Inlong mode, adlightly modified version of the legacy stack-switching mechanism isimplemented,
and an alternative stack-switching mechanism—called the interrupt stack table (IST)—is supported.

Long-Mode Stack Switches. When stacks are switched as part of along-mode privilege-level
change resulting from an interrupt, the following occurs:

* Thetarget-stack pointer read from the TSSisa64-bit RSP value.

* The SSregister is loaded with a null selector. Setting the new SS selector to null allows nested
control transfersin 64-bit mode to be handled properly. The SS.RPL valueis cleared to 0.

« Theold SS and RSP are saved on the new stack.

Interrupt Stack Table. Inlong mode, anew interrupt stack table (IST) mechanism isavailable asan
alternative to the modified legacy stack-switching mechanism. The IST mechanism unconditionally
switches stackswhen it isenabled. It can be enabled for individual interrupt vectorsusing afield inthe
IDT entry. Thisallows mixing interrupt vectors that use the modified legacy mechanism with vectors
that use the IST mechanism. The IST pointers are stored in thelong-mode TSS. The I ST mechanismis
only available when long mode is enabled.

2.6.4 IRET Instruction

In compatibility mode, IRET pops SS.eSP off the stack only if thereisa CPL change. Thisallows
legacy applicationsto run properly in compatibility mode when using the IRET instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the interrupt stack frame, even if the CPL
does not change. Thisis done because the original interrupt always pushes SS:RSP. Because interrupt

x86 and AMD64 Architecture Differer[:ﬁjvl D PUb“C Use] 37

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

stack-frame pushes are always eight bytesin long mode, an IRET from along-mode interrupt handler
(64-bit code) must pop eight-byte items off the stack. Thisis accomplished by preceding the IRET
with a 64-bit REX operand-size prefix.

Inlong mode, an IRET can load anull SS selector from the stack under the following conditions:

» Thetarget operating mode is 64-bit mode.
e Thetarget CPL<3.

Allowing IRET to load SSwith anull selector under these conditions makesit possible for the
processor to unnest interrupts (and far CALLS) in long mode.

2.6.5 Task-Priority Register (CR8)

The AMDG64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest.

A new control register (CR8) isintroduced by the AMDG64 architecture for managing priority classes.
Thisregister, also called the task-priority register (TPR), uses the four low-order bits for specifying a
task priority. How external interrupts are organized into these priority classesisimplementation
dependent. See “External Interrupt Priorities” on page 250 for information on this feature.

2.6.6 New Exception Conditions

The AMD64 architecture defines a number of new conditions that can cause an exception to occur
when the processor is running in long mode. Many of the conditions occur when software attempts to
use an address that is not in canonical form. See“Vectors’ on page 228 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching

The legacy hardware task-switch mechanism is disabled when the processor is running in long mode.
However, long mode requires system software to create data structures for a single task—the long-
mode task.

* TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS type, is defined for use in long
mode. It istheonly valid TSStypethat can be used in long mode, and it must be loaded into the TR
by executing the LTR instruction in 64-bit mode. See“ TSS Descriptor” on page 348 for additional
information.

» Task Gates—Because the legacy task-switch mechanism is not supported in long mode, software
cannot use task gates in long mode. Any attempt to transfer control to another task through a task
gate causes a general-protection exception (#GP) to occur.

» Task-Sate Segment—A 64-bit task state segment (TSS) is defined for use in long mode. This new
TSS format contains 64-bit stack pointers (RSP) for privilege levels 0-2, interrupt-stack-table

38 [AM D PUbllC U§%ﬁ and AMDG64 Architecture Differences

AMDA
AMDG64 Technology

24593—Rev. 3.36—O0October 2020

(IST) pointers, and the I/O-map base address. See “64-Bit Task State Segment” on page 355 for
additional information.

2.8 Long-Mode vs. Legacy-Mode Differences

Table 2-6 on page 39 summarizes several major system-programming differences between 64-bit
mode and legacy protected mode. The third column indicates whether the difference also appliesto
compatibility mode. “ Differences Between Long Mode and Legacy Mode” in Volume 3 summarizes
the application-programming model differences.

Table 2-6. Differences Between Long Mode and Legacy Mode

AppliesTo
Subject 64-Bit M ode Difference Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes
Task Switching Task switching not supported Yes

64-bit virtual addresses No
Addressing 4-level paging structures Yes

PAE must always be enabled

CS, DS, ES, SS segment bases are ignored
Loa_\ded Segment (Usage CS, DS, ES, FS, GS, SS segment limits are ignored No
during memory reference) DS, ES, FS, GS attribute are ignored

CS, DS, ES, SS Segment prefixes are ignored

All pushes are 8 bytes
Excep_tion and Interrupt IDT entries are expanded to 16 bytes Yes
Handling SSis not changed for stack switch

SS:RSPis pushed unconditionally

All pushes are 8 bytes

16-bit call gates areiillegal
Call Gates 32-hit call gate type is redefined as 64-bit call gate and is Yes

expanded to 16 bytes

SSis not changed for stack switch
System-Descriptor Registers | GDT, IDT, LDT, TR base registers expanded to 64 bits Yes
System-Descriptor Table LGDT and LIDT use expanded 10-byte pseudo-descriptors
Entries and Pseudo- , No
Descriptors LLDT and LTR use expanded 16-byte table entries

x86 and AMD64 Architecture Differer[:ﬁjvl D PUbllC Use]

39

AMDAA
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

40 [AM D PUbllC U é(%(‘] and AMDG64 Architecture Differences

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

3 System Resources

The operating system manages the software-execution environment and general system operation
through the use of system resources. These resources consist of system registers (control registers and
model-specific registers) and system-data structures (memory-management and protection tables).
The system-control registers are described in detail in this chapter; many of the features they control
are described elsewhere in this volume. The model -specific registers supported by the AMD64
architecture areintroduced in this chapter.

Because of their complexity, system-data structures are described in separate chapters. Refer to the
following chapters for detailed information on these data structures:

» Descriptors and descriptor tables are described in Section 4.4 * Segmentation Data Structures and
Registers,” on page 71.

» Page-trandation tables are described in Section 5.2 “ L egacy-Mode Page Trandation,” on page 126
and Section 5.3 “Long-Mode Page Trandation,” on page 134.

» Thetask-state segment is described in Section 12.2.4 “Legacy Task-State Segment,” on page 351
and Section 12.2.5 “64-Bit Task State Segment,” on page 355.

Not all processor implementations are required to support all possible features. Thelast section in this
chapter addresses processor-feature identification. System software uses the capabilities described in
that section to determine which features are supported so that the appropriate service routines are
loaded.

3.1 System-Control Registers

Theregistersthat control the AM D64 architecture operating environment include:

» CRO—Provides operating-mode controls and some processor-feature controls.

 CR2—Thisregister is used by the page-translation mechanism. It is loaded by the processor with
the page-fault virtual address when a page-fault exception occurs.

* CR3—Thisregister isalso used by the page-tranglation mechanism. It contains the base address of
the highest-level page-tranglation table, and also contains cache controls for the specified table.

* CR4—Thisregister contains additional controlsfor various operating-mode features.

» CR8—This new register, accessible in 64-bit mode using the REX prefix, is introduced by the
AMD®64 architecture. CR8 is used to prioritize external interrupts and is referred to as the task-
priority register (TPR).

 RFLAGS—This register contains processor-status and processor-control fields. The status and

control fields are used primarily in the management of virtual-8086 mode, hardware multitasking,
and interrupts.

System Resources [AMD PUbllC Use] 41

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

« EFER—This model-specific register contains status and controls for additional features not
managed by the CRO and CR4 registers. Included in this register are the long-mode enable and
activation controls introduced by the AMD®64 architecture.

Control registers CR1, CR5-CR7, and CR9—CR15 are reserved.

In legacy mode, all control registersand RFLAGS are 32 bits. The EFER register is64 bitsin al
modes. The AMD64 architecture expands all 32-bit system-control registersto 64 bits. In 64-bit mode,
the MOV CRn instructionsread or write all 64 bits of these registers (operand-size prefixes are
ignored). In compatibility and legacy modes, control-register writesfill the low 32 bits with dataand
the high 32 bitswith zeros, and control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CRO and CR4 are reserved and must be written with zeros. Writing
alto any of the high 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are

writable. However, the MOV CRn instructions do not check that addresses written to CR2 are within

the virtual-address limitations of the processor implementation.

All CR3 bitsare writable, except for unimplemented physical address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are alwaysread as zero by the processor. Attempts to load the upper 32
bits of RFLAGS with anything other than zero are ignored by the processor.

3.1.1 CRO Register

The CRO register isshown in Figure 3-1 on page 43. Thelegacy CRO register isidentical to thelow 32
bits of thisregister (CRO bits 31.0).

42

[AMD Public Use] System Resources

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

63 32
Reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0

PIC|N A w NIE|T|E[{M|P

G|D|wW REERTE m[R|p Rezned EIT|s|M|P|E

Bits Mnemonic Description R/W

63:32 Reserved Reserved, Must be Zero

31 PG Paging RIW

30 CD Cache Disable R/W

29 NW Not Writethrough R/W

28:19 Reserved Reserved

18 AM Alignment Mask R/W

17 Reserved Reserved

16 WP Write Protect R/W

15:6 Reserved Reserved

5 NE Numeric Error R/W

4 ET Extension Type R

3 TS Task Switched R/W

2 EM Emulation R/W

1 MP Monitor Coprocessor R/W

0 PE Protection Enabled R/W

Figure 3-1. Control Register 0 (CRO)

The functions of the CRO control bits are (unless otherwise noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected mode by setting PE to 1, and
disables protected mode by clearing PE to 0. When the processor is running in protected mode,
segment-protection mechanisms are enabl ed.

See Section 4.9 * Segment-Protection Overview,” on page 99 for information on the segment-
protection mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software usesthe MP bit with the task-switched control bit
(CRO.TS) to control whether execution of the WAIT/FWAIT instruction causes a device-not-available
exception (#NM) to occur, asfollows:

» If both the monitor-coprocessor and task-switched bits are set (CRO.MP=1 and CR0O.TS=1), then
executing the WAIT/FWAIT instruction causes a device-not-available exception (#NM).

» If either the monitor-coprocessor or task-switched bits are clear (CRO.MP=0 or CR0O.TS=0), then
executing the WAIT/FWAIT instruction proceeds normally.

43

System Resources [AMD Public Use]

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Software typically should set MPto 1 if the processor implementation supports x87 instructions. This
allowsthe CRO.TS bit to completely control when the x87-instruction context is saved asaresult of a
task switch.

Emulate Coprocessor (EM) Bit. Bit 2. Software forces all x87 instructionsto cause a device-not-
available exception (#NM) by setting EM to 1. Likewise, setting EM to 1 forces an invalid-opcode
exception (#UD) when an attempt is made to execute any of the 64-bit or 128-bit mediainstructions
except the FXSAVE and FXRSTOR instructions. Attempting to execute these instructionswhen EM is
set resultsin an #NM exception instead. The exception handlers can emulate these instruction typesiif
desired. Setting the EM bit to 1 does not cause an #NM exception when the WAIT/FWAIT instruction
is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute an x87 or mediainstruction
while TS=1, adevice-not-available exception (#NM) occurs. Software can use this mechanism—
sometimesreferred to as*lazy context-switching”—to save the unit contexts before executing the next
instruction of those types. Asaresult, the x87 and mediainstruction-unit contexts are saved only when
necessary asaresult of atask switch.

When a hardware task switch occurs, TSisautomatically set to 1. System software that implements
software task-switching rather than using the hardware task-switch mechanism can still usethe TS bit
to control x87 and mediainstruction-unit context saves. In this case, the task-management software
usesaMOV CRO instruction to explicitly set the TS bit to 1 during atask switch. Software can clear
the TS hit by either executing the CLTS instruction or by writing to the CRO register directly. Long-
mode system software can use this approach even though the hardware task-switch mechanism is not
supported in long mode.

The CRO.MP bit controls whether the WAIT/FWAIT instruction causes an #NM exception when
TS=1.

Extension Type (ET) Bit. Bit 4, read-only. In some early x86 processors, software set ET to 1 to
indicate support of the 387D X math-coprocessor instruction set. Thisbit isnow reserved and forced to
1 by the processor. Software cannot clear this bit to 0.

Numeric Error (NE) Bit. Bit5. Clearingthe NE bit to O disablesinternal control of x87 floating-point
exceptions and enables external control. When NE is cleared to 0, the IGNNE# input signal controls
whether x87 floating-point exceptions are ignored:

* When IGNNE# s 1, x87 floating-point exceptions are ignored.

* When IGNNE# is 0, x87 floating-point exceptions are reported by setting the FERR# input signal
to 1. External logic can use the FERR# signal as an external interrupt.

When NE isset to 1, internal control over x87 floating-point exception reporting is enabled and the
external reporting mechanism isdisabled. It is recommended that software set NE to 1. This enables
optimal performance in handling x87 floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pagesare protected from supervisor-level writeswhen the
WPhbit isset to 1. When WPis cleared to 0, supervisor software can write into read-only pages.

44 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

See Section 5.6 “ Page-Protection Checks,” on page 151 for information on the page-protection
mechanism. If the shadow stack feature has been enabled (CR4.CET=1), attempting to clear WPto O
causes a general-protection exception (#GP).

Alignment Mask (AM) Bit. Bit 18. Software enables automatic alignment checking by setting the
AM bit to 1 when RFLAGS.AC=1. Alignment checking can be disabled by clearing either AM or
RFLAGS.AC to 0. When automatic alignment checking is enabled and CPL=3, amemory referenceto
an unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. Ignored. Thisbit canbesetto 1 or cleared to O, but itsvalueis
ignored. The NW bit exists only for legacy purposes.

Cache Disable (CD) Bit. Bit 30. When CD iscleared to O, theinternal caches are enabled. When CD
Isset to 1, no new dataor instructions are brought into the internal caches. However, the processor still
accesses the internal cacheswhen CD = 1 under the following situations:

* Readsthat hitin aninternal cache causethe datato beread from the internal cache that reported the
hit.

* Writes that hit in an internal cache cause the cache line that reported the hit to be written back to
memory and invalidated in the cache.

Cache misses do not affect the internal caches when CD = 1. Software can prevent cache access by
setting CD to 1 and invalidating the caches.

Setting CD to 1 aso causes the processor to ignore the page-level cache-control bits (PWT and PCD)
when paging is enabled. These bits are located in the page-translation tables and CR3 register. See
Section “Page-Level Writethrough (PWT) Bit,” on page 144 and Section “Page-Level CacheDisable
(PCD) Bit,” on page 144 for information on page-level cache control.

See Section 7.6 “Memory Caches,” on page 191 for information on the internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation by setting PG to 1, and disables
page trand ation by clearing PG to 0. Page trans ation cannot be enabled unless the processor isin
protected mode (CRO.PE=1). If software attemptsto set PG to 1 when PE iscleared to O, the processor
causes a genera -protection exception (#GP).

See Section 5.1 “Page Trandation Overview,” on page 122 for information on the page-tranglation
mechanism.

Reserved Bits. Bits28:19, 17, 15:6, and 63:32. When writing the CRO register, software should set
the values of reserved bitsto the values found during the previous CRO read. No attempt should be
made to change reserved bits, and software should never rely on the values of reserved bits. Inlong
mode, bits 63:32 are reserved and must be written with zero, otherwise a#GP occurs.

System Resources [AMD PUb“C Use] 45

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

3.1.2 CR2 and CR3 Registers

The CR2 (page-fault linear address) register, shown in Figure 3-2 on page 46 and Figure 3-3on
page 46, and the CR3 (page-trandl ation-table base address) register, shown in Figure 3-4 and
Figure 3-5 on page 46, and Figure 3-6 on page 47, are used only by the page-transl ation mechanism.

31 0

Page-Fault Virtual Address

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

63 32

Page-Fault Virtual Address

31

Page-Fault Virtual Address

Figure 3-3. Control Register 2 (CR2)—Long Mode

See Section “CR2 Register,” on page 240 for a description of the CR2 register.
The CR3 register is used to point to the base address of the highest-level page-translation table.

31 12 11 5

4 3 2 0
PP

Page-Directory-Table Base Address Reserved C|W| Reserved
D|T
Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

31 5 4 3 2 0
PP

Page-Directory-Pointer-Table Base Address C |W| Reserved
D|T

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

46

[AMD Public Use] System Resources

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
63 52 51 32
Page-Map Level-4 Table Base Address
ez, WA (Thisisan architectural limit. A given implementation may support fewer bits.)
31 12 11 5 4 3 2 0

Usage depends on state of Processor Context ID

Page-Map Level-4 Teble Base Address enablement (CR4.PCIDE). See below.

11 5 4 3 2 0
a e
CR4.PCIDE=0 Reserved 8 E Reserved

Processor Context Identifier (See Section 5.5.1
CR4.PCIDE=1 ['Process Context Identifier,” on page 147 for more
information.)

Figure 3-6. Control Register 3 (CR3)—Long Mode

Thelegacy CR3register isdescribedin Section 5.2.1 “ CR3 Register,” on page 127, and the long-mode
CR3register isdescribed in Section 5.3.2 “CR3,” on page 134.

3.1.3 CR4 Register

The CR4 register isshown in Figure 3-7. In legacy mode, the CR4 register isidentical to the low 32
bits of the register (CR4 bits 31:0). The features controlled by the bitsin the CR4 register are model -
specific extensions. Except for the performance-counter extensions (PCE) feature, software can use
the CPUID instruction to verify that each feature is supported before using that feature. See

Section 3.3 “Processor Feature |dentification,” on page 66 for information on using the CPUID
instruction.

63 32

Reserved, MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
n_a'8u>JuJ§§ n_%%
Reserved, MBZ E§<§f§§$9ngved,MBzg§§§§5§%g%§§
(9]
o)
a7

System Resources [AMD Public Use]

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Bits Mnemonic Description Access Type
6324 — Reserved Reserved, MBZ
23 CET Control-flow Enforcement Technology R/W

22 PKE Protection Key Enable RIW

21 SMAP Supervisor Mode Access Protection RIW

20 SMEP Supervisor Mode Execution Prevention RIW

19 — Reserved Reserved, MBZ
18 OSXSAVE XSAVE and Processor Extended States Enable Bit R/W

17 PCIDE Process Context Identifier Enable RIW

Enable RDFSBASE, RDGSBASE, WRFSBASE, and

16 FSGSBASE WRGSBASE instructions RIW

1512 — Reserved Reserved, MBZ
1 UMIP User Mode Instruction Prevention R/W

10 OSXMMEXCPT Operating System Unmasked Exception Support R/W

9 OSFXSR Operating System FXSAVE/FXRSTOR Support R/W

8 PCE Performance-Monitoring Counter Enable R/W

7 PGE Page-Global Enable R/W

6 MCE Machine Check Enable R/W

5 PAE Physical-Address Extension R/W

4 PSE Page Size Extensions R/W

3 DE Debugging Extensions R/W

2 TSD Time Stamp Disable R/W

1 PVI Protected-Mode Virtual Interrupts R/W

0 VME Virtual-8086 Mode Extensions R/W

Thefunction of the CR4 control bitsare (all bits are read/write):

Virtual-8086 Mode Extensions (VME). Bit 0. Setting VME to 1 enables hardware-supported
performance enhancements for software running in virtual-8086 mode. Clearing VME to O disables
this support. The enhancements enabled when VME=1 include:

» Virtualized, maskable, external-interrupt control and notification using the VIF and VIP bitsin the
RFLAGS register. Virtualizing affects the operation of several instructions that manipulate the

RFLAGS.IF hit.

» Selective intercept of software interrupts (INTn instructions) using the interrupt-redirection

bitmap inthe TSS.

Protected-Mode Virtual Interrupts (PVI). Bit 1. Setting PV to 1 enables support for protected-
mode virtual interrupts. Clearing PV1 to 0 disables this support. When PV1=1, hardware support of
two bitsinthe RFLAGS register, VIF and VIP, is enabled.

Only the STI and CL1 instructions are affected by enabling PV1. Unlike the case when CRO.VME=1,
the interrupt-redirection bitmap in the TSS cannot be used for selective INTn interception.

PV enhancements are al so supported in long mode. See Section 8.10 “Virtual Interrupts,” on
page 271 for more information on using PVI.

48

[AMD Public Use]

System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Time-Stamp Disable (TSD). Bit 2. The TSD bit allows software to control the privilege level at
which the time-stamp counter can beread. When TSD iscleared to 0, software running at any privilege
level can read the time-stamp counter using the RDTSC or RDTSCPinstructions. When TSD is set to
1, only software running at privilege-level 0 can execute the RDTSC or RDTSCP instructions.

Debugging Extensions (DE). Bit 3. Setting the DE bit to 1 enablesthe 1/0O breakpoint capability and
enforces treatment of the DR4 and DR5 registers as reserved. Software that accesses DR4 or DR5
when DE=1 causes ainvalid opcode exception (#UD).

When the DE bit is cleared to O, 1/0 breakpoint capabilities are disabled. Software referencesto the
DR4 and DR5 registers are aliased to the DR6 and DR7 registers, respectively.

Page-Size Extensions (PSE). Bit 4. Setting PSE to 1 enablesthe use of 4-Mbyte physical pages.
With PSE=1, the physical-page size is selected between 4 Kbytes and 4 M bytes using the page-
directory entry page-sizefield (PS). Clearing PSE to O disables the use of 4-Mbyte physical pages and
restricts all physical pagesto 4 Kbytes.

The PSE bit has no effect when physical-address extensions are enabled (CR4.PAE=1). Because long
mode requires CR4.PAE=1, the PSE hit isignored when the processor is running in long mode.

See Section “4-Mbyte Page Trandation,” on page 129 for more information on 4-Mbyte page
tranglation.

Physical-Address Extension (PAE). Bit 5. Setting PAE to 1 enables the use of physical-address
extensions and 2-Mbyte physical pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-trand ation data structures are expanded from 32 bitsto 64 bits, allowing the
trandation of up to 52-bit physical addresses. Also, the physical-page size is sel ectable between

4 Kbytes and 2 Mbytes using the page-directory-entry page-size field (PS). Long mode requires PAE
to be enabled in order to use the 64-bit page-trand ation data structures to translate 64-bit virtual
addresses to 52-bit physical addresses.

See Section 5.2.3 “PAE Paging,” on page 130 for more information on physical-address extensions.

Machine-Check Enable (MCE). Bit 6. Setting MCE to 1 enables the machine-check exception
mechanism. Clearing this bit to 0 disables the mechanism. When enabled, a machine-check exception
(#MC) occurs when an uncorrectable machine-check error is encountered.

Regardless of whether machine-check exceptions are enabled, the processor records enabl ed-errors
when they occur. Error-reporting is performed by the machine-check error-reporting register banks.
Each bank includes a control register for enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but they do not cause a machine-check
exception.

See Chapter 9, “Machine Check Architecture,” for adescription of the machine-check mechanism, the
registers used, and the types of errors captured by the mechanism.

System Resources [AMD PUb“C Use] 49

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Page-Global Enable (PGE). Bit 7. When page translation is enabled, system-software performance
can often be improved by making some page translations global to all tasks and procedures. Setting
PGE to 1 enables the global-page mechanism. Clearing this bit to O disables the mechanism.

When PGE is enabled, system software can set the global-page (G) bit in the lowest level of the page-
trandation hierarchy to 1, indicating that the page trandlation is global. Page translations marked as
global are not invalidated in the TLB when the page-trand ation-table base address (CR3) is updated.
When the G bit is cleared, the page tranglation is not global. All supported physical-page sizes also
support the global -page mechanism. See Section 5.5.2 “ Global Pages,” on page 148 for information
on using the global -page mechanism.

Performance-Monitoring Counter Enable (PCE). Bit 8. Setting PCE to 1 alows software running
at any privilegelevel to use the RDPM C instruction. Software usesthe RDPM C instruction to read the
performance-monitoring counter M SRs, * PerfCtrn. Clearing PCE to 0 alowsonly the most-privileged
software (CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR). Bit 9. System software must set the OSFXSR bit to 1 to
enable use of the legacy SSE instructions. When thisbit isset to 1, it also indicates that system
software uses the FXSAVE and FXRSTOR instructions to save and restore the processor state for the
x87, 64-bit media, and 128-bit mediainstructions.

Clearing the OSFX SR hit to 0 indicates that legacy SSE instructions cannot be used. Attempts to use
those instructions while this bit is clear result in an invalid-opcode exception (#UD). Software can
continue to use the FXSAVE/FXRSTOR instructions for saving and restoring the processor state for
the x87 and 64-bit mediainstructions.

Unmasked Exception Support (OSXMMEXCPT). Bit 10. System software must set the
OSXMMEXCPT bit to 1 when it supports the SIMD floating-point exception (#XF) for handling of
unmasked 256-bit and 128-bit media floating-point errors. Clearing the OSXMMEXCPT bit to 0
indicates the #XF handler is not supported. When OSXMMEXCPT=0, unmasked 128-bit media
floating-point exceptions cause an invalid-opcode exception (#UD). See “ SIMD Floating-Point
Exception Causes’ in Volume 1 for more information on unmasked SSE floating-point exceptions.

FSGSBASE. Bit 16. System software must set thisbit to 1 to enable the execution of the
RDFSBASE, RDGSBA SE, WRFSBASE, and WRGSBA SE instructions when supported. When
enabled, these instructions allow software running in 64-bit mode at any privilege level to read and
write the FS.base and GS.base hidden segment register state. See the discussion of segment registersin
64-bit mode in Section 4.5.3 “ Segment Registersin 64-Bit Mode,” on page 76. Also see descriptions
of the RDFSBASE, RDGSBASE, WRFSBA SE, and WRGSBA SE instructionsin Volume 3.

Processor Context Identifier Enable (PCIDE). Bit 17. Enable support for Process Context
Identifiers (PCIDs). System software must set this bit to 1 to enable execution of the INVPCID
instruction when supported. Can only be set in long mode (EFER.LMA = 1). See 147 for more
information on Process Context Identifiers.

50 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

XSAVE and Extended States (OSXSAVE). Bit 18. After verifying hardware support for the
extended processor state management instructions, operating system software setsthis bit to indicate
support for the XGETBV, XSAVE and XRSTOR instructions.

Setting this bit also:
+ alowsthe execution of the XGETBYV and XSETBY instructions, and

* enablesthe XSAVE and XRSTOR instructions to save and restore the x87 FPU state (including
MMX registers), along with other processor extended states enabled in X CRO.

After initializing the XSAVE/XRSTOR save area, XSAV EOPT (if supported) may be used to save x87
FPU and other enabled extended processor state. For moreinformation on X SAVEOPT, seeindividual
instruction listing in Chapter 2 of Volume 4.

Note that legacy SSE instruction execution must be enabled prior to enabling extended processor state
management.

Supervisor Mode Execution Prevention (SMEP). Bit 20. Setting this bit enables the supervisor
mode execution prevention feature, if supported. Thisfeature prevents the execution of instructions
that reside in pages accessible by user-mode software when the processor isin supervisor-mode. See
Section 5.6 “Page-Protection Checks,” on page 151 for more information.

Protection Key Enable (PKE). Bit 22. Enable support for memory Protection Keys. Also enables
support for the RDPKRU and WRPKRU instructions. A MOV to CR4 that changes CR4.PKE from O
to 1 causes all cached entriesinthe TLB for thelogical processor to be invalidated. (See Section 5.6.6
“Memory Protection Keys (MPK) Bit,” on page 153 for more information on memory protection

keys.)

Control-flow Enforcement Technology (CET). Bit 23. Setting this bit enables the shadow stack
feature. Thisfeature ensures that return addresses read from the stack by RET and IRET instructions
originated from a CALL instruction or similar control transfer.

See Section 18 “ Shadow Stacks,” on page 619 for more information. Before setting this bit, CRO.WP
must be set to 1, otherwise a#GPfault is generated.

CR1 and CR5-CR7 Registers. Control registers CR1, CR5-CR7, and CR9-CR15 are reserved.
Attempts by software to use these registers result in an undefined-opcode exception (#UD).

3.1.4 Additional Control Registers in 64-Bit-Mode

In 64-bit mode, additional encodings are available to address up to eight additional control registers.
The REX.R bit, inaREX prefix, is used to modify the ModRM reg field when that field encodes a
control register, asshown in “REX Prefixes’” in Volume 3. These additional encodings enable the
processor to address CR8—CR15.

One additional control register, CR8, is defined in 64-bit mode for all hardware implementations, as
described in “CR8 (Task Priority Register, TPR),” below. Accessto the CRO—CR15 registersis

System Resources [AMD PUb“C Use] 51

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

implementation-dependent. Any attempt to access an unimplemented register resultsin an invalid-
opcode exception (#UD).

3.1.5 CR8 (Task Priority Register, TPR)

The AMDG64 architecture introduces a new control register, CR8, defined as the task priority register
(TPR). Theregister is accessible in 64-bit mode using the REX prefix. See Section 8.5.2 “ External
Interrupt Priorities,” on page 250 for adescription of the TPR and how system software can use the
TPR for controlling external interrupts.

3.1.6 RFLAGS Register

The RFLAGS register contains two different types of information:
» Control bits provide system-software controls and directional information for string operations.
Some of these bits can have privilege-level restrictions,

» Satus bits provide information resulting from logical and arithmetic operations. These are written
by the processor and can be read by software running at any privilege level.

Figure 3-7 on page 53 shows the format of the RFLAGS register. The legacy EFLAGS register is
identical to thelow 32 bits of the register shownin Figure 3-7 (RFLAGS bits 31:0). Theterm rFLAGS
Isused to refer to the 16-hit, 32-bit, or 64-bit flags register, depending on context.

52 [AMD PUbllC Use] System Resources

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
63 32
Reserved, RAZ
31 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| ViV A|lV|R N O|D|I|T|S|Z A P C
Reserved, RAZ D:__,::CMFOTlopLFFFFFFOFOFlF
Bits Mnemonic Description R/W
63:22 Reserved Reserved, Read as Zero
21 1D ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtua Interrupt Flag R/W
18 AC Alignment Check RIW
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W
15 Reserved Reserved, Read as Zero
14 NT Nested Task R/W
13:12 10PL 1/O Privilege Level R/W
1 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W
8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
5 Reserved Reserved, Read as Zero
4 AF Auxiliary Flag R/W
3 Reserved Reserved, Read as Zero
2 PF Parity Flag R/W
1 Reserved Reserved, Read as One
0 CF Carry Flag R/W

Figure 3-7. RFLAGS Register

The functions of the RFLAGS control and status bits used by application software are described in
“Flags Register” in Volume 1. The functions of RFLAGS system bits are (unless otherwise noted, all
bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software setsthe TF bit to 1 to enable single-step mode during software
debug. Clearing this bit to 0 disables single-step mode.

When single-step mode is enabled at the start of an instruction's execution, adebug exception (#DB)
occursimmediately after the instruction completes execution. Single stepping is automatically
disabled (TFis set to 0) when the #DB exception occurs or when any exception or interrupt occurs.

System Resources [AMD PUb“C Use] 53

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

See Section 13.1.4 “ Single Stepping,” on page 382 for information on using the single-step mode
during debugging.

Interrupt Flag (IF) Bit. Bit 9. Software setsthe |F bit to 1 to enable maskable interrupts. Clearing this
bit to 0 causes the processor to ignore maskable interrupts. The state of the | F bit does not affect the
response of a processor to non-maskable interrupts, software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:

* Thecurrent privilege-level (CPL)

* Thel/Oprivilegelevel (RFLAGS.IOPL)

* Whether or not virtual-8086 mode extensions are enabled (CR4.VME=1)

* Whether or not protected-mode virtual interrupts are enabled (CR4.PVI=1)

See Section 8.1.4 “Masking External Interrupts,” on page 227 for information on interrupt masking.
See Section 6.2.3 “ Accessing the RFLAGS Register,” on page 167 for information on the specific
instructions used to modify the I F bit.

I/0 Privilege Level Field (IOPL) Field. Bits13:12. The lOPL field specifiesthe privilege level
required to execute 1/O address-space instructions (i.e., instructions that address the 1/0O space rather
than memory-mapped /O, such asIN, OUT, INS, OUTS, etc.). For software to execute these
instructions, the current privilege-level (CPL) must be equal to or higher than (lower numerical value
than) the privilege specified by IOPL (CPL <=10PL). If the CPL islower than (higher numerical
value than) that specified by the IOPL (CPL > IOPL), the processor causes a general-protection
exception (#GP) when software attempts to execute an 1/0 instruction. See “ Protected-Mode I/O” in
Volume 1 for information on how IOPL controls access to address-space |/O.

Virtual-8086 mode uses |OPL to control virtual interrupts and the IF bit when virtual-8086 mode
extensions are enabled (CR4.VME=1). The protected-mode virtual-interrupt mechanism (PVI) also
uses |OPL to control virtual interrupts and the IF bit when PV1 isenabled (CR4.PVI=1). See
Section 8.10 “Virtual Interrupts,” on page 271 for information on how 10PL is used by the virtual
interrupt mechanism.

Nested Task (NT) Bit. Bit 14, IRET readsthe NT bit to determine whether the current task is nested
within another task. When NT is set to 1, the current task is nested within another task. When NT is
cleared to 0, the current task is at the top level (not nested).

The processor setsthe NT bit during atask switch resulting from a CALL, interrupt, or exception
through atask gate. When an IRET is executed from legacy mode whilethe NT bit is set, atask switch
occurs. See Section 12.3.3 “ Task Switches Using Task Gates,” on page 364 for information on
switching tasks using task gates, and Section 12.3.4 “Nesting Tasks,” on page 366 for information on
task nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit, when set to 1, temporarily disablesinstruction breakpoint
reporting to prevent repeated debug exceptions (#DB) from occurring. This allows an instruction

54 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

which had been inhibited by an instruction-breakpoint debug exception to be restarted by the debug
exception handler.

The processor clearsthe RF bit after every instruction is successfully executed, except when the

instructioniis:

* AnIRET that setsthe RF bit.
* JMP, CALL, or INTn through atask gate.

In both of the above cases, RF isnot cleared to O until the next instruction successfully executes.

When an exception occurs (or when a string instruction is interrupted), the processor normally sets
RF=1inthe RFLAGSimage saved on theinterrupt stack. However, when a#DB exception occursasa
result of an instruction breakpoint, the processor clearsthe RF bit to 0 in the interrupt-stack RFLAGS
image.

For instruction restart to work properly following an instruction breakpoint, the #DB exception
handler must set RF to 1 in the interrupt-stack RFLAGS image. When an IRET islater executed to
return to the instruction that caused the instruction-breakpoint #DB exception, the set RF bit (RF=1) is
loaded from the interrupt-stack RFLAGS image. RF is not cleared by the processor until the
instruction causing the #DB exception successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software setsthe VM bit to 1 to enable virtual-8086 mode.
Software clearsthe VM bit to 0 to disabl e virtual-8086 mode. System software can only changethisbit
using atask switch or an IRET. It cannot modify the bit using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic alignment checking by setting the
AC bit to 1 when CRO.AM=1. Alignment checking can be disabled by clearing either AC or CRO.AM
to 0. When automatic alignment checking is enabled and the current privilege-level (CPL) is3 (least
privileged), amemory reference to an unaligned operand causes an alignment-check exception (#AC).

Virtual Interrupt (VIF) Bit. Bit 19. TheVIF bit isavirtual image of the RFLAGS.IF bit. It is enabled
when either virtual-8086 mode extensions are enabled (CR4.VME=1) or protected-mode virtual
interrupts are enabled (CR4.PVI1=1), and the RFLAGS.IOPL field isless than 3. When enabled,
instructions that ordinarily would modify the IF bit actually modify the VIF bit with no effect on the
RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable the VIF bit using CR4.VME. This
allows 8086 software to execute instructionsthat can set and clear the RFLAGS.IF bit without causing
an exception. With VIF enabled in virtual-8086 mode, those instructions set and clear the VIF bit
instead, giving the appearance to the 8086 software that it is modifying the RFLAGS.IF bit. System
software reads the VIF bit to determine whether or not to take the action desired by the 8086 software
(enabling or disabling interrupts by setting or clearing the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when CR4.PV1=1. See Section 8.10 “ Virtual
Interrupts,” on page 271 for more information on virtual interrupts.

System Resources [AMD PUb“C Use] 55

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Virtual Interrupt Pending (VIP) Bit. Bit 20. TheVIPbit is provided as an extension to both virtual-
8086 mode and protected mode. It is used by system software to indicate that an external, maskable
interrupt is pending (awaiting) execution by either avirtual-8086 mode or protected-mode interrupt-
service routine. Software must enabl e virtual-8086 mode extensions (CR4.VME=1) or protected-
mode virtual interrupts (CR4.PVI=1) beforeusing VIP.

VIPisnormally set to 1 by a protected-mode interrupt-service routine that was entered from virtual -
8086 mode as aresult of an external, maskable interrupt. Before returning to the virtual-8086 mode
application, the serviceroutine setsVIPto 1 if EFLAGS.VIF=1. When the virtual-8086 mode
application attempts to enable interrupts by clearing EFLAGS.VIF to O while VIP=1, ageneral-
protection exception (#GP) occurs. The #GP service routine can then decide whether to alow the
virtual-8086 mode service routine to handle the pending external, maskable interrupt. (EFLAGSis
specifically referred to in this case because virtual-8086 mode is supported only from legacy mode.)

Inlong mode, the use of the VIP bit is supported when CR4.PVI=1. See Section 8.10 “Virtual
Interrupts,” on page 271 for more information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit 21. The ability of software to modify this bit
indicates that the processor implementation supports the CPUID instruction. See Section 3.3
“Processor Feature Identification,” on page 66 for more information on the CPUID instruction.

3.1.7 Extended Feature Enable Register (EFER)

The extended-feature-enabl e register (EFER) contains control bits that enable additional processor
features not controlled by the legacy control registers. The EFER isamodel-specific register (MSR)
with an address of CO00_0080h (see Section 3.2 “Model-Specific Registers (MSRs),” on page 59 for
more information on MSRs). It can be read and written only by privileged software. Figure 3-8 on
page 57 shows the format of the EFER register.

56 [AMD PUbllC Use] System Resources

AMDA

24593—Rev. 3.36—O0October 2020

AMDG64 Technology

63 32
Reserved, MBZ
31 18 17 16 15 14 13 12 11 10 9 8 0
R
M S
e V F|L S
NIOI5|T|F|m vIN|LIMIL S
Reserved, MBZ T|M C|X|s M X|M|B|M Reserved, RAZ C
WM E|[S|L E E|A|Z|E E
Bl M R| E
T B
Z
Bits Mnemonic Description R/W
63:19 Reserved, MBZ Reserved, Must be Zero
18 INTWB Interruptible WBINVD/WBNOINVD RIW
enable
17 MCOMMIT Enable MCOMMIT instruction R/W
16 Reserved, MBZ Reserved, Must be Zero
15 TCE Tranglation Cache Extension R/W
14 FFXSR Fast FXSAVE/FXRSTOR R/W
13 LMSLE Long Mode Segment Limit Enable R/W
12 SVME Secure Virtual Machine Enable R/W
1 NXE No-Execute Enable R/W
10 LMA Long ModeActive R/W
9 Reserved, MBZ Reserved, Must be Zero
8 LME Long Mode Enable R/W
71 Reserved, RAZ Reserved, Read as Zero
0 SCE System Call Extensions R/W

Figure 3-8. Extended Feature Enable Register (EFER)
The defined EFER bits shown in Figure 3-8 above are described below:

System-Call Extension (SCE) Bit. Bit0, read/write. Setting thisbit to 1 enablesthe SY SCALL and
SY SRET instructions. Application software can use these instructions for low-latency system calls
and returnsin anon-segmented (flat) address space. See Section 6.1 “Fast System Call and Return,”
on page 162 for additional information.

Long Mode Enable (LME) Bit. Bit 8, read/write. Setting thisbit to 1 enablesthe processor to activate
long mode. Long mode is not activated until software enables paging some time later. When paging is
enabled after LME is set to 1, the processor setsthe EFER.LMA hit to 1, indicating that long modeis
not only enabled but also active. See Chapter 14, “ Processor Initialization and Long Mode
Activation,” for more information on activating long mode.

System Resources

[AMD Public Use] >

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Long Mode Active (LMA) Bit. Bit 10, read/write. Thisbit indicatesthat long mode is active. The
processor sets LMA to 1 when both long mode and paging have been enabled by system software. See
Chapter 14, “Processor Initialization and Long ModeActivation,” for more information on activating
long mode.

When LMA=1, the processor is running either in compatibility mode or 64-bit mode, depending on the
value of the L bit in acode-segment descriptor, as shown in Figure 1-6 on page 12.

When LMA=0, the processor isrunning in legacy mode. In this mode, the processor behaveslikea
standard 32-bit x86 processor, with none of the new 64-bit features enabled. When writing the EFER
register the value of this bit must be preserved. Software must read the EFER register to determine the
value of LMA, change any other bits asrequired and then write the EFER register. An attempt to write
avauethat differsfrom the state determined by hardware resultsin a#GP fault.

No-Execute Enable (NXE) Bit. Bit 11, read/write. Setting thisbit to 1 enables the no-execute page-
protection feature. The feature is disabled when thisbit is cleared to 0. See Section “No Execute (NX)
Bit,” on page 145 for more information.

Before setting NXE, system software should verify the processor supports the feature by examining
the feature flag CPUID Fn8000_ 0001 EDX[NX]. See Section 3.3 “Processor Feature | dentification,”
on page 66 for information on using the CPUID instruction.

Secure Virtual Machine Enable (SVME) Bit. Bit 12, read/write. Enablesthe SVM extensions.
When thisbit is zero, the SVM instructions cause #UD exceptions. EFER.SVME defaultsto a reset
value of zero. The effect of turning off EFER.SVME while aguest isrunning is undefined; therefore,
the VMM should always prevent guests from writing EFER. SVM extensions can be disabled by
setting VM _CR.SVME_DISABLE. For more information, see descriptions of LOCK and
SMVE_DISABLE bhitsin Section 15.30.1 “VM_CR MSR (C001_0114h),” on page 550.

Long Mode Segment Limit Enable (LMSLE) bit. Bit 13, read/write. Setting thisbit to 1 enables
certain limit checksin 64-bit mode. This feature has been deprecated and is not supported by all
processor implementations. If CPUID Fn8000_0008_EBX|[EferL mlseUnsupported] (bit 20)=1, 64-bit
mode segment limit checking is not supported and attempting to set EFER.LMSLE =1 causes a#GP
exception. See Section 4.12.2 “DataLimit Checksin 64-bit Mode,” on page 118, for moreinformation
on these limit checks.

Fast FXSAVE/FXRSTOR (FFXSR) Bit. Bit 14, read/write. Setting thisbit to 1 enablesthe FXSAVE
and FXRSTOR instructions to execute faster in 64-bit mode at CPL 0. Thisis accomplished by not
saving or restoring the XMM registers (XMMO-XMM 15). The FFXSR bit has no effect when the
FXSAVE/FXRSTOR instructions are executed in non 64-bit mode, or when CPL > 0. The FFXSR bit
does not affect the save/restore of the legacy x87 floating-point state, or the save/restore of MXCSR.

Before setting FFX SR, system software should verify whether this feature is supported by examining
the feature flag CPUID Fn8000_0001 EDX[FFXSR]. See Section 3.3 *“Processor Feature
Identification,” on page 66 for information on using the CPUID instruction.

58 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Translation Cache Extension (TCE) Bit. Bit 15, read/write. Setting thisbit to 1 changes how the
INVLPG, INVLPGB, and INVPCID instructions operate on TLB entries. When thisbit is 0, these
instructionsremovethetarget PTE fromthe TLB aswell asall upper-level table entriesthat are cached
inthe TLB, whether or not they are associated with the target PTE. When thisbit is set, these
instructionswill remove thetarget PTE and only those upper-level entriesthat lead to thetarget PTE in
the page table hierarchy, leaving unrelated upper-level entriesintact. This may provide a performance
benefit.

Page table management software must be written in away that takes this behavior into account.
Software that was written for a processor that does not cache upper-level table entriesmay result in
stale entries being incorrectly used for translations when TCE is enabled. Software that is compatible
with TCE mode will operate in either mode.

For software using INVLPGB to broadcast TLB invalidations, the invalidations are controlled by the
EFER.TCE value on the processor executing the INVLPGB instruction.

Before setting TCE, system software should verify that thisfeature is supported by examining the
feature flag CPUID Fn8000_0001 ECX[TCE]. See Section 3.3 “Processor Feature Identification,” on
page 66 for information on using the CPUID instruction.

MCOMMIT ENABLE (MCOMMIT) Bit. Bit 17, read/write. Setting thisbit to 1 enablesthe
MCOMMIT instruction. When clear, attempting to execute MCOMMIT causes a#UD exception.

INTERRUPTIBLE WBINVD (INTWB) Bit. Bit 18. Setting thisbit tol allowsthe WBINVD and
WBNOINVD instructionsto be interruptible. See WBINVD and WBNOINVD in Volume 3.

3.1.8 Extended Control Registers (XCRn)

Extended control registers (XCRn) form anew register space that is available for managing processor
architectural features and capabilities. Currently only XCRO isdefined. All other XCR registersare
reserved. For more details on the Extended Control Registers, see “ Extended Control Registers’ in
Volume 4, Chapter 1.

3.2 Model-Specific Registers (MSRS)

Processor implementations provide model -specific registers (M SRs) for software control over the
unique features supported by that implementation. Software reads and writes M SRs using the
privileged RDM SR and WRM SR instructions. Implementations of the AM D64 architecture can
contain amixture of two basic MSR types:

* Legacy MSRs. The AMD family of processors often share model-specific features with other x86
processor implementations. Where possible, AMD implementations use the same MSRs for the
same functions. For example, the memory-typing and debug-extension M SRs are implemented on
many AMD and non-AMD processors.

System Resources [AMD PUb“C Use] 59

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

* AMD model-specific MSRs. There are many M SRs common to the AMD family of processors but
not to legacy x86 processors. Where possible, AMD implementati ons use the same AM D-specific
MSRsfor the same functions.

Every model-specific register, as the name implies, is not necessarily implemented by all members of
the AMD family of processors. Appendix A, “MSR Cross-Reference,” lists M SR-address ranges
currently used by variousAMD and other x86 processors.

The AMDG64 architecture includes a number of features that are controlled using MSRs. Those MSRs
are shown in Figure 3-9. The EFER register—described in Section 3.1.7 “ Extended Feature Enable

Register (EFER),” on page 56—isalso an MSR.

System-Configuration Shadow Stack
Register Memory-Typing Registers Registers
SYSCFG MTRRcap PLO_SSP

MTRRdefType PL1 S5P
System-Linkage Registers MTRRphysBasen PL2 SSP
STAR MTRRphysMaskn PL3_SSP
LSTAR MTRRfixn ISST_ADDR
CSTAR PAT U_CET
SFMASK TOP_MEM 5 CET
FS.base TOP_MEM2
35.base
KermalcShaca Performanc_e-Monitoring
Registers
SYSENTER_CS TSC
SYSENTER_ESP PerfEvtSeln
SYSENTER_EIP PerfCtrn
Deb:g;:tt:rr;smn Machine-Check Registers
DebugCt! MCG_CAP
LastBranchFromIP MCG_STAT
LastBranchTolP MCG_CTL
LastIntTolP MCi_CTL
MCi_STATUS
MCi_ADDR
MCi_MISC

Figure 3-9. AMDG64 Architecture Model-Specific Registers

Thefollowing sections briefly describe the MSRs in the AMD64 architecture.

60

[AMD Public Use]

System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

3.2.1 System Configuration Register (SYSCFG)

The system-configuration register (SY SCFG) contains control bitsfor enabling and configuring
system busfeatures. SY SCFG is amodel-specific register (M SR) with an address of C001_0010h.
Figure 3-10 on page 61 showsthe format of the SY SCFG register. Some features are implementation
specific, and are described in the BIOSand Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicableto your product. | mplementation-specific features are not
shown in Figure 3-10.

31 25 24 23 22 21 20 19 18 17 0
\%
VIRALY ElT (MMM

Reserved P ’: I\E/I W ,a \[; I'; g Reserved

Liclel®Bl2|m|m|E
E

Bits Mnemonic Description R/W

31:26 Reserved

25 VMPLE VMPLEN R/W

24 SNPE SecureNestedPagingEn R/W

23 MEME MemEncryptionM odeEn R/W

22 FWB Tom2ForceMemTypeWB R/W

21 TOM2 MtrrTom2En R/W

20 MVDM MtrrVarDramEn R/W

19 MFDM MtrrFixDramModEn R/W

18 MFDE MtrrFixDramEn R/W

17:0 Reserved

Figure 3-10. System-Configuration Register (SYSCFG)

The function of the SY SCFG bits are (all bits are read/write unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting thisbit to 1 enables use of the RdMem and WrMem attributesin
the fixed-range MTRR registers. When cleared, these attributes are disabled. The RdMem and
WrMem attributes allow system software to define fixed-range IORRs using the fixed-range MTRRs.
See Section 7.9.1 “ Extended Fixed-Range MTRR Type-Field Encodings,” on page 215 for
information on using thisfeature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software to read and write the RdMem
and WrMem bits. When cleared, writes do not modify the RdMem and WrMem bits, and reads return
0. See Section 7.9.1 “ Extended Fixed-Range MTRR Type-Field Encodings,” on page 215 for
information on using thisfeature.

System Resources [AMD PUb“C Use] 61

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

MtrrVarDramEn Bit. Bit 20. Setting thisbit to 1 enablesthe TOP_MEM register and the variable-
range |ORRs. These registers are disabled when the bit is cleared to 0. See Section 7.9.2 “IORRS,” on
page 216 and Section 7.9.4 “ Top of Memory,” on page 218 for information on using these features.

MtrrTom2En Bit. Bit 21. Setting thisbit to 1 enablesthe TOP_MEM?2 register. Theregister is
disabled when thishit iscleared to 0. See Section 7.9.4 “ Top of Memory,” on page 218 for information
on using thisfeature.

Tom2ForceMemTypeWB. Bit 22. Setting thisbit to 1 forces the default memory type for memory
between 4GB and the address specified by TOP_MEM?2 to be write back instead of the memory type
defined by MTRRdef Type[Type]. For thisbit to have any effect, MTRRdef Type[E] must be 1. MTRR
variable-range settings and PAT can be used to override this memory type.

MemEncryptionM odeEn. Bit 23. Setting this bit to 1 enables the SME (Section 7.10 “ Secure
Memory Encryption,” on page 220) and SEV (Section 15.34 “ Secure Encrypted Virtualization,” on
page 555) memory encryption features. When cleared, these features are disabled. If
MSRCO001_0015[SmmLock] is set, the MemEncryptionModeEn bit is sticky and cannot be changed
fromaltoaO.

SecureNestedPagingEn. Bit 24. Setting thisbit to 1 enables SEV-SNP (Section 15.36 “ Secure Nested
Paging (SEV-SNP),” on page 569). When cleared, thisfeature is disabled. Oncethisbitissetto 1, it
cannot be changed. This bit can only be set if MemEncryptionM odeEn has been previously or is
simultaneously also set to 1.

VMPLERN. Bit 25. Setting this bit to 1 enables the VMPL feature (Section 15.36.7 “Virtual Machine
Privilege Levels,” on page 573). Software should set this bit to 1 when SecureNestedPagingEn is
being set to 1. Once SecureNestedPagingEn is set to 1, VMPLEN cannot be changed.

3.2.2 System-Linkage Registers

System-linkage M SRs are used by system softwareto allow fast control transfers between applications
and the operating system. The functions of theseregisters are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used to provide mode-
dependent linkage information for the SY SCALL and SY SRET instructions. STAR isused in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility mode. SFMASK isused by the
SYSCALL instruction for RFLAGS in long mode.

FS.base and GS.base Registers. Theseregistersallow 64-bit base-address values to be specified
for the FS and GS segments, for usein 64-bit mode. See Section “FS and GS Registersin 64-Bit
Mode,” on page 76 for a description of the special treatment the FS and GS segments receive.

KernelGSbase Register. Thisregister isused by the SWAPGS instruction. Thisinstruction
exchangesthe value located in K ernel GSbase with the value located in GS.base.

62 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

SYSENTERX Registers. The SYSENTER _CS, SYSENTER _ESP, and SYSENTER_EIPregisters
are used to provide linkage information for the SY SENTER and SY SEXIT instructions. These
instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are described in Section 6.1 * Fast System Call
and Return,” on page 162.

3.2.3 Memory-Typing Registers

Memory-typing M SRs are used to characterize, or type, memory. Memory typing allows software to
control the cacheability of memory, and determine how accessesto memory are ordered. The memory-
typing registers perform the following functions:

MTRRcap Register. Thisregister containsinformation describing the level of MTRR support
provided by the processor.

MTRRdefType Register. Thisregister establishes the default memory type to be used for physical
memory that is not specifically characterized using the fixed-range and variable-range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. Theseregistersform aregister pair that can
be used to characterize any address range within the physical-memory space, including all of physical
memory. Up to eight address ranges of varying sizes can be characterized using these registers.

MTRRfixn Registers. Theseregistersare used to characterize fixed-size memory rangesin thefirst 1
Mbytes of physical-memory space.

PAT Register. Thisregister allows memory-type characterization based on the virtua (linear)
address. It isan extension to the PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-typing capabilities asthe MTRRs, but
with the added flexibility provided by the paging mechanism.

TOP_MEM and TOP_MEM2 Registers. Thesetop-of-memory registers allow system softwareto
specify physical addresses ranges as memory-mapped 1/0 locations.

Refer to Section 7.7 “Memory-Type Range Registers,” on page 200 for more information on using
these registers.

3.2.4 Debug-Extension Registers

The debug-extension M SRs provide software-debug capability not availablein the legacy debug
registers (DRO-DRY7). These MSRs allow single stepping and recording of control transfersto take
place. The debug-extension registers perform the following functions:

DebugCtl Register. ThisMSR register provides control over control-transfer recording and single
stepping, and external-breakpoint reporting and trace messages.

System Resources [AMD PUb“C Use] 63

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

LastBranchx and LastIntx Registers. Thefour registers, LastBranchTol P, LastBranchFromiP,
LastIntTol P, and LastIntFromIP, are all used to record the source and target of control transferswhen
branch recording is enabled.

Refer to Section 13.1.6 “ Control-Transfer Breakpoint Features,” on page 382 for moreinformation on
using these debug registers.

3.2.5 Performance-Monitoring Registers

The time-stamp counter and performance-monitoring registers are useful in identifying performance
bottlenecks. The number of performance counters can vary based on the implementation. These
registers perform the following functions:

TSC Register. Thisregister isused to count processor-clock cycles. It can beread using the RDM SR
instruction, or it can be read using the either of the read time-stamp counter instructions, RDTSC or
RDTSCP. System software can make RDTSC or RDTSCP available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to O.

*PerfEvtSeln Registers. Theseregistersare used to specify the events counted by the corresponding
performance counter, and to control other aspects of its operation.

*PerfCtrn Registers. These registers are performance counters that hold a count of processor,
northbridge, or L2 cache events or the duration of events, under the control of the corresponding

* PerfEvtSeln register. Each * PerfCtrn register can be read using the RDM SR instruction, or they can
be read using the read performance-monitor counter instruction, RDPMC. System software can make
RDPMC available for use by non-privileged software by setting the performance-monitor counter
enable bit (CR4.PCE) to 1.

Refer to Section 13.2.3 “Using Performance Counters,” on page 391 for more information on using
theseregisters.

3.2.6 Machine-Check Registers

The machine-check registers control the detection and reporting of hardware machine-check errors.
Thetypes of errorsthat can be reported include cache-access errors, |oad-data and store-data errors,
bus-parity errors, and ECC errors. Two types of machine-check MSRs are shown in Figure 3-9 on

page 60.
Thefirst typeis global machine-check registers, which perform the following functions:

MCG_CAP Register. Thisregister identifies the machine-check capabilities supported by the
processor.

MCG_CTL Register. Thisregister provides global control over machine-check-error reporting.

MCG_STATUS Register. Thisregister reports global status on detected machine-check errors.

64 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The second typeis error-reporting register banks, which report on machine-check errors associated
with a specific processor unit (or group of processor units). There can be different numbers of register
banksfor each processor implementation, and each bank isnumbered from O toi. Theregistersin each
bank perform the following functions:

MCi_CTL Registers. Theseregisters control error-reporting.

MCi_STATUS Registers. These registersreport machine-check errors.
MCi_ADDR Registers. Theseregistersreport the machine-check error address.
MCi_MISC Registers. Theseregisters report miscellaneous-error information.

Refer to Section 9.5 “Using MCA Features,” on page 296 for more information on using these
registers.

3.2.7 Shadow Stack Registers

Theseregisters are defined if the shadow stack feature is supported asindicated by CPUID Fn
0000_0007_O0 ECX[CET_SS] (hit 7) = 1.

PLO_SSP, PL1_SSP, PL2_SSP Registers. Theseregisters specify the linear address to be loaded
into SSP on the next transition to CPLn, where n=0, 1, 2. The linear address must be in canonical
format and aligned to 4 bytes.

PL3_SSP Register. Theuser mode SSPissaved to and restored from thisregister. The linear address
must be in canonical format and aligned to 4 bytes.

ISST_ADDR Register. Thisregister specifiesthe linear address of the Interrupt SSP Table (1SST).
The linear address must be in canonical format.

U_CET Register. Thisregister specifiesthe user mode shadow stack controls.

S_CET Register. Thisregister specifiesthe supervisor mode shadow stack controls.
3.2.8 Other MSRs

XSS Register. Thisregister containsabitmap of supervisor-level state components. System software
setsbitsin the XSS register bitmap to enable management of corresponding state component by the
XSAVES/XRSTORS instructions. XSS register support isindicated by CPUID
FnO000_000D_EAX[XSAVES] x1=1.

The XSS bitmap is defined asfollows:

System Resources [AMD PUb“C Use] 65

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 32
Reserved, MBZ
31 13 12 11 10 0

Reserved, MBZ CET_SCET_U Reserved, MBZ
Bits Mnemonic Description
63:13 Reserved, MBZ Reserved, Must be Zero
12 CET_S Enables the CET_U state component.
1 CET_U Enables the CET_S state component.

10:0 Reserved, MBZ Reserved, Must be Zero

Figure 3-11. XSS Register

3.3 Processor Feature Identification

The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this
information. Software can utilize thisinformation to optimize performance.

The CPUID instruction supports multiple functions, each providing specific information about the
processor implementation, including the vendor, model number, revision (stepping), features, cache
organization, and name. The multifunction approach alowsthe CPUID instruction to return adetailed
picture of the processor implementation and its capabilities—more detailed information than could be
returned by asingle function. Thisflexibility also allowsfor the addition of new CPUID functionsin
future processor generations.

The desired function number isloaded into the EAX register before executing the CPUID instruction.
CPUID functions are divided into two types:

* Sandard functions return information about features common to all x86 implementations,
including the earliest features offered in the x86 architecture, as well as information about the
presence of features such as support for the AVX and FMA instruction subsets. Standard function
numbers are in the range 0000_0000h—0000_FFFFh.

» Extended functions return information about AMD-specific features such as long mode and the
presence of features such as support for the FMA4 and X OPinstruction subsets. Extended function
numbers arein the range 8000_0000h—8000_FFFFh.

Featureinformationisreturned in the EAX, EBX, ECX, and EDX registers. Some functions accept a
second input parameter passed to the instruction in the ECX register.

66 [AMD PUbllC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

In this and the other three volumes of this Programmer’s Manual, the notation CPUID
FnX XXX XXXX_RRR[FieldName] _xYY isused to represent the input parameters and return val ue that
corresponds to a particular processor capability or feature.

In this notation, XXXX_XXXX represents the 32-bit value to be placed in the EAX register prior to
executing the CPUID instruction. Thisvalueisthe function number. RRRis either EAX, EBX, ECX,
or EDX and representsthe register to be examined after the execution of theinstruction. If the contents
of the entire 32-bit register provides the capability information, the notation [FieldName] is omitted,
otherwise this provides the name of the field within the return value that represents the capability or
feature.

When thefield isasinglebit, thisis called afeature flag. Normally, if afeature flag bit is set, the
corresponding processor featureis supported and if it is cleared, the featureis not supported. The
optional input parameter passed to the CPUID instruction in the ECX register is represented by the
notation _xYY appended after the return value notation. If a CPUID function does not accept this
optional input parameter, this notation is omitted.

For more specific information on the CPUID instruction, see the instruction reference page in Volume
3. For adescription of all feature flags related to instruction subset support, see Volume 3, Appendix
D, "Instruction Subsets and CPUID Feature Flags." For acomprehensivelist of all processor
capabilities and feature flags, see Volume 3, Appendix E, "Obtaining Processor Information Viathe
CPUID Instruction.”

System Resources [AMD PUb“C Use] 67

AMDAA
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

68 [AMD PUblIC Use] System Resources

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

4 Segmented Virtual Memory

Thelegacy x86 architecture supports a segment-trans ation mechanism that allows system software to
relocate and isolate instructions and data anywhere in the virtual-memory space. A segment isa
contiguous block of memory within the linear address space. The size and location of asegment within
the linear address space is arbitrary. Instructions and data can be assigned to one or more memory
segments, each with its own protection characteristics. The processor hardware enforces the rules
dictating whether one segment can access another segment.

The segmentation mechanism provides ten segment registers, each of which defines asingle segment.
Six of theseregisters (CS, DS, ES, FS, GS, and SS) define user segments. User segments hold
software, data, and the stack and can be used by both application software and system software. The
remaining four segment registers (GDT, LDT, IDT, and TR) define system segments. System
segments contain data structures initialized and used only by system software. Segment registers
contain abase address pointing to the starting location of asegment, alimit defining the segment size,
and attributes defining the segment-protection characteristics.

Although segmentation provides agreat deal of flexibility in relocating and protecting software and
data, it is often more efficient to handle memory isolation and relocation with a combination of
software and hardware paging support. For this reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be completely disabled, and an understanding
of the segmentation mechanism isimportant to implementing long-mode system software.

In long mode, the effects of segmentation depend on whether the processor isrunning in compatibility
mode or 64-bit mode:

* Incompatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.
* 64-bit mode, segmentation isdisabled, creating aflat 64-bit virtual-address space. Aswill be seen,

certain functions of some segment registers, particularly the system-segment registers, continue to
be used in 64-bit mode.

4.1 Real Mode Segmentation

After reset or power-up, the processor always initially enters real mode. Protected modes are entered
from real mode.

Asnoted in “Real Addressing” on page 10, real mode (real-address mode), provides a physical-
memory space of 1 Mbyte. In thismode, a 20-bit physical addressis determined by shifting a 16-bit
segment selector to the left four bits and adding the 16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) isaligned on 16-byte boundaries. The segment baseis
the lowest address in a given segment, and is equal to the segment selector * 16. The POPand MOV
instructions can be used to load a (possibly) new segment selector into one of the segment registers.

Segmented Virtual Memory [AM D PUb“C Use] 69

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

When this occurs, the selector is updated and the segment base is set to selector * 16. The segment
[imit and segment attributes are unchanged, but are normally 64K (the maximum allowable limit) and
read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the new value, and the CS segment baseis
set to selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and
read/write, respectively.

If the interrupt descriptor table (IDT) isused to find the real mode IDT see “ Real-Mode I nterrupt
Control Transfers” on page 251.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation

Virtual-8086 mode supports 16-bit real mode programs running under protected mode (see below). It
uses a simple form of memory segmentation, optional paging, and limited protection checking.
Programs running in virtual-8086 mode can access up to IMB of memory space.

Aswith real mode segmentation, each 64K segment (CS, DS, ES, FS, GS, SS) isaligned on 16-byte
boundaries. The segment baseisthe lowest addressin a given segment, and is equal to the segment
selector * 16. The POP and MOV instructions work exactly asin real mode and can be used to load a
(possibly) new segment selector into one of the segment registers. When this occurs, the selector is
updated and the segment base is set to selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions, operate asin real mode. On FAR
transfers, the CS (code segment) selector is updated to the new value, and the CS segment baseis set to
selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and read/write,
respectively. Interrupts and exceptions switch the processor to protected mode. (See Chapter 8,
“Exceptions and Interrupts’ for more information.)

4.3 Protected Mode Segmented-Memory Models

System software can use the segmentation mechanism to support one of two basic segmented-memory
models: aflat-memory model or a multi-segmented model. These segmentation models are supported
in legacy mode and in compatibility mode. Each type of model is described in the following sections.

4.3.1 Multi-Segmented Model

In the multi-segmented memory model, each segment register can reference a unique base address
with aunique segment size. Segments can be as small asasingle byte or aslarge as 4 Gbytes. When
page trand ation is used, multiple segments can be mapped to a single page and multiple pages can be
mapped to asingle segment. Figure 1-1 on page 6 shows an example of the multi-segmented model.

70 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The multi-segmented memory model providesthe greatest level of flexibility for system software
using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be used in support of legacy software.
However, in compatibility mode, the multi-segmented memory model isrestricted to thefirst 4 Gbytes
of virtual-memory space. Accessto virtual memory above 4 Gbytes requires the use of 64-bit mode,
which does not support segmentation.

4.3.2 Flat-Memory Model

The flat-memory model is the simplest form of segmentation to implement. Although segmentation
cannot be disabled, the flat-memory model allows system software to bypass most of the segmentation
mechanism. In the flat-memory model, all segment-base addresses have avalue of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to O effectively disables segment
trandation, resulting in a single segment spanning the entire virtual -address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on page 7 shows an example of the flat-
memory model.

4.3.3 Segmentation in 64-Bit Mode

In 64-bit mode, segmentation is disabled. The segment-base value isignored and treated as O by the
segmentation hardware. Likewise, segment limits and most attributes areignored. There are afew
exceptions. The CS-segment DPL, D, and L attributes are used (respectively) to establish the privilege
level for aprogram, the default operand size, and whether the program is running in 64-bit mode or
compatibility mode. The FS and GS segments can be used as additional base registersin address
calculations, and those segments can have non-zero base-address values. Thisfacilitates addressing
thread-local data and certain system-software data structures. See “FS and GS Registersin 64-Bit
Mode” on page 76 for details about the FS and GS segments in 64-bit mode. The system-segment
registers are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers

Figure 4-1 on page 72 shows the following data structures used by the segmentation mechanism:

» Segment Descriptors—As the name implies, a segment descriptor describes a segment, including
itslocation in virtual -address space, its size, protection characteristics, and other attributes.

* Descriptor Tables—Segment descriptors are stored in memory in one of three tables. The global-
descriptor table (GDT) holds segment descriptors that can be shared among all tasks. Multiple
local-descriptor tables (LDT) can be defined to hold descriptors that are used by specific tasks and
are not shared globally. The interrupt-descriptor table (IDT) holds gate descriptors that are used to
access the segments where interrupt handlers are located.

o Task-State Segment—A task-state segment (TSS) is a special type of system segment that contains
task-state information and data structures for each task. For example, a TSS holds a copy of the
GPRsand EFLAGS register when atask is suspended. A TSS a so holds the pointersto privileged-

Segmented Virtual Memory [AMD PUbllC Use] 71

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

software stacks. The TSS and task-switch mechanism are described in Chapter 12, “Task
Management.”

Segment Selectors—Descriptors are selected for use from the descriptor tables using a segment
selector. A segment selector contains an index into either the GDT or LDT. The IDT is indexed
using an interrupt vector, as described in “ Legacy Protected-Mode Interrupt Control Transfers’ on
page 253, and in “Long-Mode Interrupt Control Transfers’ on page 264.

Global-Descriptor Table (GDT)

Descriptor
> Descriptor
Segment Descriptors
Descriptor
Segment Selectors) I Code
| Selector 1 Local-Descriptor Table (LDT) | Stack
Descriptor Soeeaol
| Selector 2 I—'_> Descriptor | Data
| | I Gate
Descriptor o
| Selector n | | Task-State Segment
Interrupt-Descriptor Table (IDT) ,
Gate Descriptor 2 | Local-Descriptor Table
Gate Descriptor
Gate Descriptor

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 73 showsthe registers used by the segmentation mechanism. Theregistershavethe
following relationship to the data structures:

Segment Registers—The six segment registers (CS, DS, ES, FS, GS, and SS) are used to point to
the user segments. A segment selector selects adescriptor whenit isloaded into one of the segment
registers. This causes the processor to automatically load the selected descriptor into a software-
invisible portion of the segment register.

Descriptor-Table Registers—The three descriptor-table registers (GDTR, LDTR, and IDTR) are
used to point to the system segments. The descriptor-table registers identify the virtual-memory
location and size of the descriptor tables.

Task Register (TR)—Describes the location and limit of the current task state segment (TSS).

72

[AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Code Segment Register Global-Descriptor-Table Register
CS | GDTR

i

Data Segment Registers
Interrupt-Descriptor-Table Register

| DS
| | IDTR
.
il Local-Descriptor-Table Register
| LDTR
s 1
Task Register
Stack Segment Register | -

SS

i

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, pointsto the TSS. The data structures and registers
associ ated with task-state segments are described in * Task-M anagement Resources’ on page 346.

4.5 Segment Selectors and Registers

4.5.1 Segment Selectors

Segment selectors are pointersto specific entriesin the global and local descriptor tables. Figure 4-3
shows the segment sel ector format.

15 3 2 10
S TI| RPL
Bits Mnemonic Description R/W
153 Sl Selector Index R/W
2 Tl Table Indicator R/W
1.0 RPL Requestor Privilege Level R/W

Figure 4-3. Segment Selector

The selector format consists of the following fields:

Segmented Virtual Memory [AM D PUb“C Use] 73

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Selector Index Field. Bits15:3. The selector-index field specifies an entry in the descriptor table.
Descriptor-table entries are eight bytes long, so the selector index is scaled by 8 to form a byte offset
into the descriptor table. The offset isthen added to either the global or local descriptor-table base
address (asindicated by the table-index bit) to form the descriptor-entry address in virtual-address
Space.

Some descriptor entriesin long mode are 16 bytes long rather than 8 bytes (see “Legacy Segment
Descriptors’ on page 84 for moreinformation on long-mode descriptor-table entries). These expanded
descriptors consume two entries in the descriptor table. Long mode, however, continuesto scale the
selector index by eight to form the descriptor-table offset. It isthe responsibility of system software to
assign selectors such that they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit2. TheTI bitindicateswhich table holds the descriptor referenced by the
selector index. When T1=0the GDT isused and when TI=1the LDT isused. The descriptor-table base
addressisread from the appropriate descriptor-table register and added to the scaled selector index as
described above.

Requestor Privilege-Level (RPL) Field. Bits1:0. The RPL representsthe privilege level (CPL) the
processor is operating under at the time the selector is created.

RPL is used in segment privilege-checks to prevent software running at lesser privilege levelsfrom
accessing privileged data. See “ Data-A ccess Privilege Checks’ on page 101 and “ Control-Transfer
Privilege Checks’ on page 104 for more information on segment privilege-checks.

Null Selector. Null selectors have a selector index of 0 and T1=0, corresponding to the first entry in
the GDT. However, null selectors do not referencethefirst GDT entry but are instead used to
invalidate unused segment registers. A general-protection exception (#GP) occursif areferenceis
made to use a segment register containing anull selector in non-64-bit mode. By initializing unused
segment registers with null selectors software can trap references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS data-segment registers, and into the
LDTR descriptor-table register. A #GP occurs if software attemptsto load the CS register with anull
selector or if software attemptsto load the SSregister with anull selector in non 64-bit mode or at CPL
3.

4.5.2 Segment Registers

Six 16-bit segment registers are provided for referencing up to six segments at one time. All software
tasks require segment selectorsto beloaded in the CS and SSregisters. Use of the DS, ES, FS, and GS
segmentsisoptional, but nearly all software accesses data and therefore requires aselector inthe DS
register. Table 4-1 on page 75 lists the supported segment registers and their functions.

74 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 4-1. Segment Registers

Eee?grinstegrt Encoding Segment Register Function
ES /0 References optional data-segment descriptor entry
Cs 1 References code-segment descriptor entry
SS 12 References stack segment descriptor entry
DS 13 References default data-segment descriptor entry
FS 14 References optional data-segment descriptor entry
GS /5 References optional data-segment descriptor entry

The processor maintains a hidden portion of the segment register in addition to the selector value
loaded by software. This hidden portion contains the values found in the descriptor-table entry
referenced by the segment selector. The processor |oads the descriptor-table entry into the hidden
portion when the segment register isloaded. By keeping the corresponding descriptor-table entry in
hardware, performance is optimized for the majority of memory references.

Figure 4-4 showsthe format of the visible and hidden portions of the segment register. Except for the
FS and GS segment base, software cannot directly read or write the hidden portion (shown as gray-
shaded boxesin Figure 4-4).

Selector

Segment Attributes

32-Bit Segment Limit

32-Bit Segment Base Address

|:| Hidden From Software

Figure 4-4. Segment-Register Format

CS Register. The CSregister contains the segment selector referencing the current code-segment
descriptor entry. All instruction fetches reference the CS descriptor. When anew selector isloaded into
the CSregister, the current-privilege level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register contains the segment selector referencing the default
data-segment descriptor entry. The SS register contains the stack-segment selector. The ES, FS, and
GSregisters are optionally loaded with segment sel ectors referencing other data segments. Data
accesses default to referencing the DS descriptor except in the following two cases:

Segmented Virtual Memory [AM D PUb“C Use] 75

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» TheESdescriptor isreferenced for string-instruction destinations.
» The SSdescriptor is referenced for stack operations.

4.5.3 Segment Registers in 64-Bit Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden portion of the CSregister is
ignored. Only the L (long), D (default operation size), and DPL (descriptor privilege-level) attributes
are recognized by 64-bit mode. Address cal cul ations assume a CS.base value of 0. CS references do
not check the CS.limit value, but instead check that the effective addressisin canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents of the ES, DS, and SS
segment registers are ignored. All fields (base, limit, and attribute) in the hidden portion of the
segment registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS, or SS segments are treated as if the
segment base is 0. Instead of performing limit checks, the processor checksthat all virtual-address
references arein canonical form.

Neither enabling and activating long mode nor switching between 64-bit and compatibility modes
changes the contents of the visible or hidden portions of the segment registers. These registersremain
unchanged during 64-bit mode execution unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlikethe CS, DS, ES, and SS segments, the FS and GS
segment overrides can be used in 64-bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-address (EA) calculation. The complete
EA calculation then becomes (FS or GS).base + base + (scale * index) + displacement. The FS.base
and GS.base values are a so expanded to the full 64-bit virtual-address size, as shown in Figure 4-5.
Theresulting EA calculation is alowed to wrap across positive and negative addresses.

Selector

Segment Attributes

32-Bit Segment Limit

64-Bit Segment Base Address

|:| Hidden from Software and Unused in 64-bit Mode

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

In 64-bit mode, FS-segment and GS-segment overrides are not checked for limit or attributes. Instead,
the processor checksthat all virtual-address references are in canonical form.

76 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Segment register-load instructions (MOV to Sreg and POP Sreg) load only a 32-bit base-address value
into the hidden portion of the FS and GS segment registers. The base-address bits above thelow 32 bits
are cleared to 0 asaresult of asegment-register load. When anull selector isloaded into FSor GS, the
contents of the corresponding hidden descriptor register are not altered.

There are two methods to update the contents of the FS.base and GS.base hidden descriptor fields. The
first isavailable exclusively to privileged software (CPL = 0). The FS.base and GS.base hidden
descriptor-register fields are mapped to M SRs. Privileged software can load a 64-bit base addressin
canonical forminto FS.base or GS.base using asingle WRM SR instruction. The FS.base M SR address
iSC000_0100h while the GS.base M SR addressis C000_0101h.

The second method of updating the FS and GS base fields is available to software running at any
privilege level (when supported by the implementation and enabled by setting CR4[FSGSBASE]).
The WRFSBA SE and WRGSBA SE instructions copy the contents of a GPR to the FS.base and
GS.base fields respectively. When the operand size is 32 bits, the upper doubleword of the baseis
cleared. WRFSBA SE and WRGSBA SE are only supported in 64-bit mode.

The addresses written into the expanded FS.base and GS.base registers must bein canonical form. Any
instruction that attempts to write a non-canonical addressto these registers causes ageneral-protection
exception (#GP) to occur.

When in compatibility mode, the FS and GS overrides operate as defined by the legacy x86
architecture regardless of the value loaded into the high 32 bits of the hidden descriptor-register base-
addressfield. Compatibility mode ignores the high 32 bits when cal culating an effective address.

4.6 Descriptor Tables

Descriptor tables are used by the segmentation mechanism when protected modeis enabled
(CRO.PE=1). These tables hold descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory referencesin protected mode access a descriptor-table entry.

Aspreviously mentioned, there are three types of descriptor tables supported by the x86 segmentation
mechanism:

» Global descriptor table (GDT)

» Local descriptor table (LDT)

e Interrupt descriptor table (IDT)

Software establishes the location of a descriptor table in memory by initializing its corresponding

descriptor-table register. The descriptor-tabl e registers and the descriptor tables are described in the
following sections.

4.6.1 Global Descriptor Table

Protected-mode system software must create aglobal descriptor table (GDT). The GDT contains code-
segment and data-segment descriptor entries (user segments) for segments that can be shared by all

Segmented Virtual Memory [AM D PUbllC Use] 77

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

tasks. In addition to the user segments, the GDT can al so hold gate descriptors and other system-
segment descriptors. System software can store the GDT anywhere in memory and should protect the
segment containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (T1) bit in the selector iscleared to 0. The
selector index portion of the segment selector references a specific entry in the GDT. Figure 4-6 on
page 78 shows how the segment selector indexesinto the GDT. One special form of asegment selector
isthe null selector. A null selector pointsto thefirst entry inthe GDT (the selector index is0 and
T1=0). However, null selectors do not reference memory, so thefirst GDT entry cannot be used to
describe a segment (see “Null Selector” on page 74 for information on using the null selector). The
first usable GDT entry isreferenced with a selector index of 1.

Selector Index + TI+ | Segment Selector
Global (Ti=0)
Local (TI=1)
Descriptor Table N\

A
(s
g-

\\

~ - Selector Index + 000

Unused in GDT

Descriptor Table Base Address Descriptor Table Limit

A

Global or Local Descriptor-Table Register

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global Descriptor-Table Register

The global descriptor-table register (GDTR) pointsto the location of the GDT in memory and defines
itssize. Thisregister isloaded from memory using the LGDT instruction (see“LGDT and LIDT
Instructions” on page 168). Figure 4-7 shows the format of the GDTR in legacy mode and
compatibility mode.

78 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 79 shows the format of the GDTR in 64-bit mode.

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains two fields:

Limit. 2 bytes. These bitsdefinethe 16-bit limit, or size, of the GDT in bytes. Thelimit valueisadded
to the base address to yield the ending byte address of the GDT. A general-protection exception (#GP)
occursif software attempts to access a descriptor beyond the GDT limit.

The offsetsinto the descriptor tables are not extended by the AM D64 architecture in support of long
mode. Therefore, the GDTR and IDTR limit-field sizes are unchanged from the legacy sizes. The
processor does check the limitsin long mode during GDT and IDT accesses.

Base Address. 8 bytes. The base-addressfield holds the starting byte address of the GDT in virtual-
memory space. The GDT can be located at any byte addressin virtual memory, but system software
should alignthe GDT on aquadword boundary to avoid the potential performance penalties associated
with accessing unaligned data.

The AMDG64 architecture increases the base-address field of the GDTR to 64 bits so that system
software running in long mode can locate the GDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 4 bytes of base address when running in legacy mode.

4.6.3 Local Descriptor Table

Protected-mode system software can optionally create alocal descriptor table (LDT) to hold segment
descriptors belonging to asingle task or even multiple tasks. The LDT typically contains code-

Segmented Virtual Memory [AM D PUb“C Use] 79

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

segment and data-segment descriptors aswell as gate descriptorsreferenced by the specified task. Like
the GDT, system software can storethe LDT anywhere in memory and should protect the segment
containing the LDT from non-privileged software.

Segment selectors point to the LD T when the table-index bit (TI) in the selector isset to 1. The selector
index portion of the segment sel ector references a specific entry inthe LDT (see Figure 4-6 on

page 78). Unlike the GDT, however, aselector index of O referencesthefirst entry inthe LDT (when
TI=1, the selector isnot anull selector).

LDTs are described by system-segment descriptor entries located in the GDT, and aGDT can contain
multiple LDT descriptors. The LDT system-segment descriptor definesthe location, size, and
privilegerightsfor the LDT. Figure 4-9 on page 80 shows the relationship between the LDT and GDT
data structures.

Loading anull selector into the LDTR isuseful if software does not usean LDT. This causes a#GPif
an erroneous referenceismadeto the LDT.

Global Local
Descriptor Descriptor
Table Table

\
\\

LDT Selector

LDT Attributes
GDT Limit | — KA LT Limit | —

GDT Base Address » LDT Base Address

\\
\ \
WA

\ 4

Global Descriptor Table Register Local Descriptor Table Register

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local Descriptor-Table Register

Thelocal descriptor-table register (LDTR) pointsto the location of the LDT in memory, definesits
size, and specifiesitsattributes. The LDTR hastwo portions. A visible portion holdsthe LDT selector,
and a hidden portion holdsthe LDT descriptor. When the LDT selector isloaded intothe LDTR, the
processor automatically loadsthe LDT descriptor from the GDT into the hidden portion of the LDTR.
The LDTR isloaded in one of two ways.

e UsingtheLLDT instruction (see“LLDT and LTR Instructions’ on page 168).

80 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Performing atask switch (see “ Switching Tasks’ on page 359).
Figure 4-10 on page 81 showsthe format of the LDTR in legacy mode.

Selector

Descriptor Attributes

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

|:| Hidden From Software

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 showsthe format of the LDTR in long mode (both compatibility mode and 64-bit mode).

Selector

Descriptor Attributes

32-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

|:| Hidden From Software

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields;

LDT Selector. 2 bytes. These bitsareloaded explicitly from the TSS during atask switch, or by using
the LLDT instruction. The LDT selector must point to an LDT system-segment descriptor entry in the
GDT. If it does not, a general-protection exception (#GP) occurs.

Thefollowing three fields are loaded automatically from the LDT descriptor inthe GDT as aresult of
loading the LDT selector. The register fields are shown as shaded boxesin Figure 4-10 and
Figure 4-11.

Segmented Virtual Memory [AMD PUb“C Use] 81

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Base Address. Thebase-addressfield holds the starting byte address of the LDT in virtual-memory
space. Likethe GDT, the LDT can be located anywhere in system memory, but software should align
the LDT on aquadword boundary to avoid performance penalties associated with accessing unaligned
data.

The AM D64 architecture expands the base-addressfield of the LDTR to 64 bits so that system
software running in long mode can locate an LDT anywhere in the 64-bit virtual -address space. The
processor ignores the high-order 32 base-address bits when running in legacy mode. Because the
LDTRisloaded from the GDT, the system-segment descriptor format (L DTs are system segments) has
been expanded by the AMD®64 architecture in support of 64-bit mode. See L ong Mode Descriptor
Summary” on page 98 for more information on this expanded format. The high-order base-address
bits are only loaded from 64-bit mode using the LLDT instruction (see“LLDT and LTR Instructions’
on page 168 for more information on thisinstruction).

Limit. Thisfield definesthelimit, or size, of the LDT in bytes. The LDT limit asstoredinthe LDTR
1S 32 bits. When the LDT limit isloaded from the GDT descriptor entry, the 20-bit limit field in the
descriptor isexpanded to 32 bitsand scal ed based on the value of the descriptor granularity (G) bit. For
details on the limit biasing and granularity, see “ Granularity (G) Bit” on page 85.

If an attempt is made to access a descriptor beyond the LDT limit, a general -protection exception
(#GP) occurs.

The offsets into the descriptor tables are not extended by the AMD®64 architecture in support of long
mode. Therefore, the LDTR limit-field size is unchanged from the legacy size. The processor does
check the LDT limit in long mode during LDT accesses.

Attributes. Thisfield holdsthe descriptor attributes, such as privilege rights, segment presence and
segment granularity.

4.6.5 Interrupt Descriptor Table

Thefinal type of descriptor tableisthe interrupt descriptor table (IDT). Multiple IDTs can be
maintained by system software. System software selects aspecific IDT by loading the interrupt
descriptor tableregister (IDTR) with apointer tothe IDT. Aswith the GDT and LDT, system software
can storethe IDT anywhere in memory and should protect the segment containing the IDT from non-
privileged software.

TheIDT can contain only the following types of gate descriptors:

* Interrupt gates

e Trapgates

* Task gates.

The use of gate descriptors by the interrupt mechanism is described in Chapter 8, “Exceptions and

Interrupts.” A general-protection exception (#GP) occursif the IDT descriptor referenced by an
interrupt or exception is not one of the types listed above.

82 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

IDT entries are selected using the interrupt vector number rather than a selector value. The interrupt
vector number is scaled by the interrupt-descriptor entry sizeto form an offset into the IDT. The
interrupt-descriptor entry size depends on the processor operating mode as follows:

* Inlong mode, interrupt descriptor-table entries are 16 bytes.
* Inlegacy mode, interrupt descriptor-table entries are eight bytes.

Figure 4-12 shows how the interrupt vector number indexesthe IDT.

Interrupt
Descriptor Table) oy
e
Interrupt Vector
Descriptor Entry
Size
< IDT Base Address IDT Limit

Interrupt Descriptor Table Register

Figure 4-12. Indexing an IDT

4.6.6 Interrupt Descriptor-Table Register

Theinterrupt descriptor-table register (IDTR) pointsto the IDT in memory and definesitssize. This
register isloaded from memory using the LIDT instruction (see“LGDT and LIDT Instructions’ on
page 168). Theformat of the IDTR isidentical to that of the GDTR in all modes. Figure 4-7 on

page 79 shows the format of the IDTR inlegacy mode. Figure 4-8 on page 79 shows the format of the
IDTR inlong mode.

The offsets into the descriptor tables are not extended by the AMDG64 architecture in support of long
mode. Therefore, the IDTR limit-field size is unchanged from the legacy size. The processor does
check the IDT limit in long mode during IDT accesses.

Segmented Virtual Memory [AM D PUb“C Use] 83

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

4.7 Legacy Segment Descriptors

4.7.1 Descriptor Format

Segment descriptors define, protect, and i solate segmentsfrom each other. There aretwo basic types of
descriptors, each of which are used to describe different segment (or gate) types:

* User Segments—These include code segments and data segments. Stack segments are a type of
data segment.

e System Segments—System segments consist of LDT segments and task-state segments (TSS).
Gate descriptors are another type of system-segment descriptor. Rather than describing segments,
gate descriptors point to program entry points.

Figure 4-13 shows the generic format for user-segment and system-segment descriptors. User and
system segments are differentiated using the Shit. S=1 indicates a user segment, and S=0 indicatesa
system segment. Gray shading indicatesthe field or bit isreserved. The format for a gate descriptor
differsfrom the generic segment descriptor, and is described separately in “ Gate Descriptors’ on

page 90.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
Dl [A —
BaseAddress[3124] |G| /| |V Seg[‘lg?ig]'m't P|DPL | S| Type Base Address[23:16] 4
Bl [L :
Base Address 15:0] Segment Limit[15:0] +0

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 showsthefieldsin a generic, legacy-mode, 8-byte (two doubleword) segment descriptor.
In thisfigure, the upper doubleword (located at byte offset +4) is shown on top and the lower
doubleword (located at byte offset +0) is shown on the bottom. The fields are defined asfollows:

Segment Limit. The 20-bit segment limit isformed by concatenating bits 19:16 of the upper
doubleword with bits 15:0 of lower doubleword. The segment limit defines the segment size, in bytes.
The granularity (G) bit controls how the segment-limit field is scaled (see “ Granularity (G) Bit” on
page 85). For data segments, the expand-down (E) bit determines whether the segment limit defines
the lower or upper segment-boundary (see “ Expand-Down (E) Bit” on page 88).

If software references a segment descriptor with an address beyond the segment limit, ageneral-
protection exception (#GP) occurs. The #GP occursif any part of the memory reference falls outside
the segment limit. For example, adoubleword (4-byte) address reference causes a#GPif one or more
bytes are located beyond the segment limit.

Base Address. The 32-bit base addressisformed by concatenating bits 31:24 of the upper
doubleword with bits 7:0 of the same doubleword and bits 15:0 of the lower doubleword. The
segment-base address field |ocates the start of a segment in virtual-address space.

84 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

S Bit and Type Field. Bit 12 and bits 11:8 of the upper doubleword. The S and Typefields, together,
specify the descriptor type and its access characteristics. Table 4-2 summarizes the descriptor types by
S-field encoding and gives a cross reference to descriptions of the Type-field encodings.

Table 4-2. Descriptor Types

. Descriptor . .

SField Type Type-Field Encoding

LDT
0 (System) TSS See Table 4-5 on page 89

Gate
Code See Table 4-3 on page 87

1 (User)
Data See Table 4-4 on page 88

Descriptor Privilege-Level (DPL) Field. Bits 14:13 of the upper doubleword. The DPL field
indicates the descriptor-privilege level of the ssgment. DPL can be set to any value from 0 to 3, with 0
specifying the most privilege and 3 the least privilege. See “ Data-Access Privilege Checks’ on

page 101 and “ Control-Transfer Privilege Checks’” on page 104 for more information on how the DPL
is used during segment privilege-checks.

Present (P) Bit. Bit 15 of the upper doubleword. The segment-present bit indicates that the segment
referenced by the descriptor isloaded in memory. If areference is made to a descriptor entry when

P = 0, asegment-not-present exception (#NP) occurs. Thisbit is set and cleared by system software
and is never atered by the processor.

Available To Software (AVL) Bit. Bit 20 of the upper doubleword. Thisfield isavailableto software,
which can write any valueto it. The processor does not set or clear thisfield.

Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. The default operand-size bit is
found in code-segment and data-segment descriptors but not in system-segment descriptors. Setting
thisbit to 1 indicates a 32-bit default operand size, and clearing it to 0 indicates a 16-bit default size.
The effect this bit has on a segment depends on the segment-descriptor type. See “ Code-Segment
Default-Operand Size (D) Bit” on page 87 for adescription of the D bit in code-segment descriptors.
“Data-Segment Default Operand Size (D/B) Bit” on page 89 describesthe D bit in data-segment
descriptors, including stack segments, where the bit isreferred to asthe “B” bit.

Granularity (G) Bit. Bit 23 of the upper doubleword. The granularity bit specifies how the segment-
limit field is scaled. Clearing the G bit to O indicates that the limit field is not scaled. In this case, the
limit equals the number of bytes availablein the segment. Setting the G bit to 1 indicates that the limit
field isscaled by 4 Kbytes (4096 bytes). Here, the limit field equal s the number of 4-Kbyte blocks
availablein the segment.

Setting alimit of 0 indicates a 1-byte segment limit when G = 0. Setting the same limit of 0 when G =
1 indicates a segment limit of 4095.

Segmented Virtual Memory [AM D PUb“C Use] 85

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Reserved Bits. Generally, software should clear al reserved bitsto O, so they can be defined in future
revisionsto the AMDG64 architecture.

4.7.2 Code-Segment Descriptors

Figure 4-14 shows the code-segment descriptor format (gray shading indicatesthe bit isreserved). All
software tasks require that a segment selector, referencing avalid code-segment descriptor, isloaded
into the CSregister. Code segments establish the processor operating mode and execution privilege-
level. The segments generally contain only instructions and are execute-only, or execute and read-
only. Software cannot write into a segment whose selector references a code-segment descriptor.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0
A Segment
Base Addresg[31:24] G|D V| PIDPL|1|1|C|R|A Base Address[23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the Shit set to 1, identifying the segments as user segments. Type-field
bit 11 differentiates code-segment descriptors (bit 11 set to 1) from data-segment descriptors (bit 11
cleared to 0). The remaining type-field bits (10:8) define the access characteristics for the code-
segment, asfollows:

Conforming (C) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifiesthe code segment
as conforming. When control istransferred to a higher-privilege conforming code-segment (C=1) from
alower-privilege code segment, the processor CPL does not change. Transfers to non-conforming
code-segments (C = 0) with ahigher privilege-level than the CPL can occur only through gate
descriptors. See “ Control-Transfer Privilege Checks’ on page 104 for more information on
conforming and non-conforming code-segments.

Readable (R) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 indicates the code segment is
both executable and readabl e as data. When thishit is cleared to O, the code segment is executabl e, but
attempts to read data from the code segment cause a general -protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor iscopied fromthe GDT or LDT into the CSregister. Thisbit isonly cleared by software.

Table 4-3 on page 87 summarizes the code-segment type-field encodings.

86 [AMD PUbllC Use] Segmented Virtual Memory

AMDA

24593—Rev. 3.36—O0October 2020

Table 4-3. Code-Segment Descriptor Types

AMDG64 Technology

TypeField
Hex) Bit 10 Bit 9 Bit 8 —
Value Bit 11 : Description
(Code/Data) Conforming Readable Accessed
©) (R) (A)
8 0 0 0 Execute-Only
9 0 0 1 Execute-Only — Accessed
A 0 1 0 Execute/Readable
B 0 1 1 Execute/Readable — Accessed
C 1 1 0 0 Conforming, Execute-Only
D 1 0 1 Conforming, Execute-Only — Accessed
E 1 1 0 Conforming, Execute/Readable
F 1 1 1 Conforming, Execute/Readable —
Accessed

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-segment descriptors, the
D bit selectsthe default operand size and address sizes. In legacy mode, when D=0 the default operand
size and address size is 16 bits and when D=1 the default operand size and address size is 32 hits.
Instruction prefixes can be used to override the operand size or address size, or both.

4.7.3 Data-Segment Descriptors

Figure 4-15 shows the data-segment descriptor format. Data segments contain non-executable
information and can be accessed as read-only or read/write. They arereferenced using the DS, ES, FS,
GS, or SS data-segment registers. The DS data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment registers hold segment sel ectors for additional
data segments usabl e by the current software task.

The stack segment isa specia form of data-segment register. It isreferenced using the SS segment
register and must be read/write. When loading the SSregister, the processor requires that the sel ector
reference avalid, writable data-segment descriptor.

31 24 23 22 21 20 19 16 15 14 1312 11 10 9 8 7 0
D A Segment Limit
Base Addresg31:24] G|/ v [19:16] P|DPL |1|0|E|W|A Base Address[23:16] +4
B L '
Base Address[15:0] Segment Limit[15:0] +0
Figure 4-15. Data-Segment Descriptor—Legacy Mode
Segmented Virtual Memory 87

[AMD Public Use]

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Data-segment descriptors have the S bit set to 1, identifying them as user segments. Type-field bit 11
differentiates data-segment descriptors (bit 11 cleared to 0) from code-segment descriptors (bit 11 set
to 1). The remaining type-field bits (10:8) define the data-segment access characteristics, asfollows:

Expand-Down (E) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the data
segment as expand-down. In expand-down segments, the segment limit defines the lower segment
boundary while the base is the upper boundary. Valid segment offsetsin expand-down segmentsliein
the byte range limit+1 to FFFFh or FFFF_FFFFh, depending on the value of the data segment default
operand size (D/B) hit.

Expand-down segments are useful for stacks, which grow in the downward direction as elements are
pushed onto the stack. The stack pointer, ESP, is decremented by an amount equal to the operand size
asaresult of executing a PUSH instruction.

Clearing the E bit to O identifies the data segment as expand-up. Valid segment offsets in expand-up
segments liein the byte range 0 to segment limit.

Writable (W) Bit. Bit 9 of the upper doubleword. Setting thisbit to 1 identifies the data segment as
read/write. When thisbit is cleared to O, the segment is read-only. A general -protection exception
(#GP) occursiif software attempts to write into a data segment when W=0.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit isset to 1 by the processor when
the descriptor is copied from the GDT or LDT into one of the data-segment registers or the stack-
segment register. Thisbit isonly cleared by software.

Table 4-4 summarizes the data-segment type-field encodings.

Table 4-4. Data-Segment Descriptor Types

Type Field
Hex Bit 10 Bit 9 Bit 8
Bit 11 N Description
Value Expand .
(Code/Data) Down Writable Accessed
©) (W))
0 0 0 0 Read-Only
1 0 0 1 Read-Only — Accessed
2 0 1 0 Read/Write
3 0 0 1 1 Read/Write — Accessed
4 1 0 0 Expand-down, Read-Only
5 1 0 1 Expand-down, Read-Only — Accessed
6 1 1 0 Expand-down, Read/Write
7 1 1 1 Expand-down, Read/Write — Accessed
88 Segmented Virtual Memory

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. For expand-down
data segments (E=1), setting D=1 sets the upper bound of the segment at 0 FFFF_FFFFh. Clearing
D=0 setsthe upper bound of the segment at 0_FFFFh.

In the case where a data segment is referenced by the stack selector (SS), the D bit isreferred to asthe
B bit. For stack segments, the B bit setsthe default stack size. Setting B=1 establishes a 32-bit stack
referenced by the 32-bit ESPregister. Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SPregister.

4.7.4 System Descriptors

There are two general types of system descriptors. system-segment descriptors and gate descriptors.
System-segment descriptors are used to describethe LDT and TSS segments. Gate descriptors do not
describe segments, but instead hol d pointersto code-segment descriptors. Gate descriptors are used for
protected-mode control transfers between less-privileged and more-privileged software.

System-segment descriptors have the Shit cleared to 0. The type field is used to differentiate the
variousLDT, TSS, and gate descriptors from one another. Table 4-5 summarizes the system-segment
type-field encodings.

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode

Vave | (Bhers) Description
0 0000 Reserved (Illegal)
1 0001 Available 16-bit TSS
2 0010 LDT
3 0011 Busy 16-bit TSS
4 0100 16-bit Call Gate
5 0101 Task Gate
6 0110 16-bit Interrupt Gate
7 0111 16-bit Trap Gate
8 1000 Reserved (Illegal)
9 1001 Available 32-bit TSS
A 1010 Reserved (Illegal)
B 1011 Busy 32-bit TSS
C 1100 32-hit Call Gate
D 1101 Reserved (Illegal)
E 1110 32-bit Interrupt Gate
F 111 32-bit Trap Gate

Segmented Virtual Memory [AM D PUb“C Use] 89

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Figure 4-16 shows the legacy-mode system-segment descriptor format used for referencing LDT and
TSS segments (gray shading indicates the bit isreserved). Thisformat is also used in compatibility
mode. The system-segments are used as follows:

 The LDT typicaly holds segment descriptors belonging to a single task (see “Local Descriptor
Table” on page 79).

* TheTSSis adata structure for holding processor-state information. Processor state is saved in a
TSSwhen atask is suspended, and state is restored from the TSS when atask is restarted. System
software must create at least one TSS referenced by the task register, TR. See “Legacy Task-State
Segment” on page 351 for more information on the TSS.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
! A Segment
Base Address[31:24] G| G |V|,. 2. P|DPL |O Type Base Address[23:16] +4
N L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors

Gate descriptors hold pointersto code segments and are used to control access between code segments
with different privilege levels. There are four types of gate descriptors:

o Call Gates—These gates (Figure 4-17 on page 91) are located in the GDT or LDT and are used to
control access between code segmentsin the sametask or in different tasks. See“ Control Transfers
Through Call Gates’ on page 108 for information on how call gates are used to control access
between code segments operating in the same task. The format of a call-gate descriptor isshownin
Figure 4-17 on page 91.

* Interrupt Gates and Trap Gates—These gates (Figure 4-18 on page 91) arelocated inthe IDT and
are used to control access to interrupt-service routines. “Legacy Protected-Mode Interrupt Control
Transfers’ on page 253 contains information on using these gates for interrupt-control transfers.
The format of interrupt-gate and trap-gate descriptorsis shown in Figure 4-17 on page 91.

» Task Gates—These gates (Figure 4-19 on page 91) are used to control access between different
tasks. They are also used to transfer control to interrupt-service routines if those routines are
themselves a separate task. See “ Task-Management Resources’ on page 346 for more information
on task gates and their use.

90 [AMD PUbllC Use] Segmented Virtual Memory

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
31 16 15 14 13 12 11 8 7 6 5 4 0
Target Code-Segment Offset[31:16] P|DPL |O Type R | GNed Parameter Count | +4
Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

Figure 4-17. Call-Gate Descriptor—Legacy Mode

31 16 15 14 13 12 11 8 7 0
Target Code-Segment Offset[31:16] P|DPL |O Type Reserved, IGN +4
Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P|{DPL |O Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor format and the system-segment descriptor
format. These differences are described as follows, from least-significant to most-significant bit
positions:

Target Code-Segment Offset. The 32-bit segment offset isformed by concatenating bits 31:16 of
byte +4 with bits 15:0 of byte +0. The segment-offset field specifies the target-procedure entry point
(offset) into the segment. Thisfield isloaded into the EIPregister asaresult of acontrol transfer using
the gate descriptor.

Target Code-Segment Selector. Bits31:16 of byte +0. The segment-selector field identifies the
target-procedure segment descriptor, located in either the GDT or LDT. The segment selector isloaded
into the CS segment register as aresult of acontrol transfer using the gate descriptor.

TSS Selector. Bits31:16 of byte +0 (task gatesonly). Thisfield identifies the target-task TSS
descriptor, located in any of the three descriptor tables (GDT, LDT, and IDT).

Segmented Virtual Memory [AMD PUb“C Use] 91

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Parameter Count (Call Gates Only). Bits4:0 of byte +4. L egacy-mode call-gate descriptors contain
a5-bit parameter-count field. Thisfield specifiesthe number of parameters to be copied from the
currently-executing program stack to the target program stack during an automatic stack switch.
Automatic stack switches are performed by the processor during a control transfer through a call gate
to agreater privilege-level. The parameter size depends on the call-gate size as specified in the type
field. 32-hit call gates copy 4-byte parameters, and 16-bit call gates copy 2-byte parameters. See
“Stack Switching” on page 112 for more information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors

Theinterpretation of descriptor fieldsis changed inlong mode, and in some casestheformat is
expanded. The changes depend on the operating mode (compatibility mode or 64-bit mode) and on the
descriptor type. The following sections describe the changes.

4.8.1 Code-Segment Descriptors

Code segments continue to exist in long mode. Code segments and their associated descriptors and
selectors are needed to establish the processor operating mode as well as execution privilege-level.
The new L attribute specifies whether the processor is running in compatibility mode or 64-bit mode
(see”Long (L) Attribute Bit” on page 93). Figure 4-20 shows the long-mode code-segment descriptor
format. In compatibility mode, the code-segment descriptor isinterpreted and behavesjust asit doesin
legacy mode as described in “ Code-Segment Descriptors’ on page 86.

In Figure 4-20, gray shading indicates the code-segment descriptor fieldsthat are ignored in 64-bit
mode when the descriptor isused during amemory reference. However, thefields are loaded whenever
the segment register isloaded in 64-bit mode.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0
A
. Segment i
Base Address[31:24] G|D|L|V|, . . P|DPL |1[1|C|R|A Base Address[23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode, and code segments span
all of virtual memory. In this mode, code-segment base addresses are ignored. For the purpose of
virtual-address cal culations, the base addressistreated asif it hasavalue of zero.

Segment-limit checking is not performed, and both the segment-limit field and granularity (G) bit are
ignored. Instead, the virtual addressis checked to seeif it isin canonical-address form.

Thereadable (R) and accessed (A) attributesin the type field are a'so ignored.

92 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a new attribute, thelong (L) bit, in
code-segment descriptors. This bit specifiesthat the processor isrunning in 64-bit mode (L=1) or
compatibility mode (L=0). When the processor is running in legacy mode, thisbit is reserved.

Compatibility mode maintains binary compatibility with legacy 16-bit and 32-bit applications.
Compatibility modeis selected on a code-segment basis, and it allows legacy applications to coexist
under the same 64-bit system software along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and 32-bit applications by clearing the L bit
of the code-segment descriptor to 0.

When L=0, the legacy meaning of the code-segment D bit (see “ Code-Segment Default-Operand Size
(D) Bit” on page 87)—and the address-size and operand-size prefixes—are observed. Segmentationis
enabled when L=0. From an application viewpoint, the processor isin alegacy 16-bit or 32-bit
operating environment (depending on the D bit), even though long mode is activated.

If the processor isrunning in 64-bit mode (L=1), the only valid setting of the D bit is0. This setting
produces a default operand size of 32 bits and a default address size of 64 bits. The combination L=1
and D=1 isreserved for future use.

“Instruction Prefixes’ in Volume 3 describes the effect of the code-segment L and D bits on default
operand and address sizes when long mode is activated. These default sizes can be overridden with
operand size, address size, and REX prefixes.

4.8.2 Data-Segment Descriptors

Data segments continue to exist in long mode. Figure 4-21 shows the long-mode data-segment
descriptor format. In compatibility mode, data-segment descriptors are interpreted and behave just as
they do in legacy mode.

In Figure 4-21, gray shading indicates the fieldsthat are ignored in 64-bit mode when the descriptor is
used during amemory reference. However, the fields are loaded whenever the segment register is
loaded in 64-bit mode.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0
D A
. Segment .
Base Address[31:24] G|/ Vi, S P|DPL |[1[0|E|W]|A Base Address[23:16] +4
B L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode. The interpretation of the
segment-base address depends on the segment register used:

Segmented Virtual Memory [AM D PUb“C Use] 93

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» In data-segment descriptors referenced by the DS, ES and SS segment registers, the base-address
field isignored. For the purpose of virtual-address calculations, the base addressis treated as if it
has avalue of zero.

» Data segments referenced by the FS and GS segment registers receive special treatment in 64-bit
mode. For these segments, the base address field is not ignored, and a non-zero value can be used
in virtual-address calculations. A 64-bit segment-base address can be specified using model-
specific registers. See”FS and GS Registersin 64-Bit Mode” on page 76 for more information.

Segment-limit checking is not performed on any data segments in 64-bit mode, and both the segment-
limit field and granularity (G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field attributes are ignored.

A data-segment-descriptor DPL field isignored in 64-bit mode, and segment-privilege checks are not
performed on data segments. System software can use the page-protection mechanismsto isolate and
protect data from unauthorized access.

4.8.3 System Descriptors

In long mode, the allowabl e system-descriptor types encoded by the type field are changed. Some
descriptor types are modified, and others are illegal. The changes are summarized in Table 4-6. An
attempt to use an illegal descriptor type causes a general -protection exception (#GP).

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex TypeField .
- - - - Description
Value | Bit11 Bit 10 Bit 9 Bit 8
0 0 0 0 0
a g g g T Reserved (Illegal)
2 0 0 1 0 64-bit LDT*
3 0 0 1 1
4 0 1 0 0
> 0 ! 0 ! Reserved (I1legal)
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1 Available 64-bit TSS
A 1 0 1 0 Reserved (I1legal)
B 1 0 1 1 Busy 64-bit TSS
C 1 1 0 0 64-bit Call Gate
Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

94 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 4-6. System-Segment Descriptor Types—Long Mode (continued)

Hex Type Field .
_ . _ . Description
Value | Bit11 Bit 10 Bit9 Bit 8
D 1 1 0 1 Reserved (I1legal)
E 1 1 1 0 64-bit Interrupt Gate
F 1 1 1 1 64-bit Trap Gate
Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

In long mode, the modified system-segment descriptor types are:

e The32-bit LDT (02h), which isredefined asthe 64-bit LDT.
» Theavailable 32-bit TSS (09h), which isredefined as the avail able 64-bit TSS.
* Thebusy 32-bit TSS (0Bh), which isredefined as the busy 64-bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors are expanded by 64 bits, asshownin
Figure 4-22. Inthisfigure, gray shading indicatesthefieldsthat areignored in 64-bit mode. Expanding
the descriptors allows them to hold 64-bit base addresses, so their segments can be located anywhere
in the virtual-address space. The expanded descriptor can be loaded into the corresponding descriptor-
tableregister (LDTR or TR) only from 64-bit mode. In compatibility mode, the legacy system-
segment descriptor format, shown in Figure 4-16 on page 90, isused. See“LLDT and LTR
Instructions’” on page 168 for more information.

31 23 20 19 16 15 14 13 12 11 10 9 8 7 0
Reserved, IGN 0(0|0|0]|O Reserved, IGN +12
Base Address[63:32] +8
A Segment
Base Address[31:24] G V|, P|DPL |0 Type Base Address[23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-hit system-segment base address must be in canonical form. Otherwise, a general-protection
exception occurs with a selector error-code, #GP(sel ector), when the system segment is loaded.
System-segment limit values are checked by the processor in both 64-bit and compatibility modes,
under the control of the granularity (G) bit.

Figure 4-22 showsthat bits 12:8 of doubleword +12 must be cleared to 0. These bits correspond to the
Sand Typefieldsin alegacy descriptor. Clearing these bitsto O correspondsto anillegal typein legacy

Segmented Virtual Memory [AM D PUb“C Use] 95

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

mode and causes a#GPif an attempt is made to access the upper half of a64-bit mode system-segment
descriptor as alegacy descriptor or asthe lower half of a 64-bit mode system-segment descriptor.

4.8.4 Gate Descriptors

Asshown in Table 4-6 on page 94, the allowable gate-descriptor types are changed in long mode.
Some gate-descriptor types are modified and others areillegal. The modified gate-descriptor typesin
long mode are:

» The 32-bit call gate (OCh), which isredefined as the 64-bit call gate.
» The 32-bit interrupt gate (OEh), which isredefined as the 64-bit interrupt gate.
» The 32-bit trap gate (OFh), which isredefined as the 64-bit trap gate.

Inlong mode, several gate-descriptor types areillegal. An attempt to use these gates causes a general-
protection exception (#GP) to occur. Theillegal gate typesare:

» The16-bit call gate (04h).

» Thetask gate (05h).

» The 16-bit interrupt gate (06h).

e The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits, allowing them to hold 64-bit offsets. The 64-
bit call-gate descriptor is shown in Figure 4-23 and the 64-bit interrupt gate and trap gate are shownin
Figure 4-24 on page 97. In these figures, gray shading indicates the fields that are ignored in long

mode. The interrupt and trap gates contain an additional field, the I ST, that is not present in the call
gate—see “IST Field (Interrupt and Trap Gates)” on page 97.

31 16 15 14 13 12 11 10 9 8 7 0
Reserved, IGN o|oj0|0|0O Reserved, IGN +12
Target Offset[63:32] +8
Target Offset[31:16] P| DPL | O Type Reserved, IGN +4
Target Selector Target Offset[15:0] +0

Figure 4-23. Call-Gate Descriptor—Long Mode

96 [AMD PUbllC Use] Segmented Virtual Memory

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
31 16 15 14 13 12 11 8 7 3 2 0
Reserved, IGN +12
Target Offset[63:32] +8
Target Offset[31:16] P| DPL | O Type Reserved, IGN IST +4
Target Selector Target Offset[15:0] +0

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by along-mode gate descriptor must be a 64-bit code segment
(CS.L=1, CS.D=0). If the target is hot a 64-bit code segment, a general-protection exception,
#GP(error), occurs. The error code reported depends on the gate type:

» Call gatesreport the target code-segment sel ector asthe error code.
* Interrupt and trap gates report the interrupt vector number asthe error code.

A general-protection exception, #GP(0), occurs if software attempts to reference along-mode gate
descriptor with atarget-segment offset that is not in canonical form.

Itis possiblefor software to store legacy and long mode gate descriptors in the same descriptor table.
Figure 4-23 on page 96 showsthat bits 12:8 of byte +12 in along-mode call gate must be cleared to 0.
These bits correspond to the S and Typefieldsin alegacy call gate. Clearing these bitsto O
corresponds to an illegal typein legacy mode and causes a#GPif an attempt is made to access the
upper half of a64-bit mode call-gate descriptor as alegacy call-gate descriptor.

It isnot necessary to clear these same bitsin along-mode interrupt gate or trap gate. In long mode, the
interrupt-descriptor table (IDT) must contain 64-bit interrupt gates or trap gates. The processor
automatically indexesthe IDT by scaling the interrupt vector by 16. Thismakesit impossibleto access
the upper half of along-mode interrupt gate, or trap gate, as alegacy gate when the processor is
running in long mode.

IST Field (Interrupt and Trap Gates). Bits2:0 of byte +4. Long-mode interrupt gate and trap gate
descriptors contain anew, 3-bit interrupt-stack-table (1ST) field not present in legacy gate descriptors.
TheIST field isused as an index into the IST portion of along-mode TSS. If the IST field isnot O, the
index references an I ST pointer in the TSS, which the processor loadsinto the RSP register when an
interrupt occurs. If the IST index is 0, the processor uses the legacy stack-switching mechanism (with
some modifications) when an interrupt occurs. See “Interrupt-Stack Table” on page 268 for more
information.

Segmented Virtual Memory [AM D PUb“C Use] 97

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Count Field (Call Gates). The count field found in legacy call-gate descriptorsis not supported in
long-mode call gates. In long mode, thefield is reserved and should be cleared to zero.

4.8.5 Long Mode Descriptor Summary

System descriptors and gate descriptors are expanded by 64 bitsto handle 64-bit base addressesin
long mode or 64-bit mode. The mode in which the expansion occurs depends on the purpose served by
the descriptor, asfollows:

* Expansion Only In 64-Bit Mode—The system descriptors and pseudo-descriptors that are loaded
into the GDTR, IDTR, LDTR, and TR registers are expanded only in 64-bit mode. They are not
expanded in compatibility mode.

* Expansion In Long Mode—Gate descriptors (call gates, interrupt gates, and trap gates) are
expanded in long mode (both 64-bit mode and compatibility mode). Task gates and 16-bit gate
descriptorsareillegal in long mode.

The AMDG64 architecture redefines several of the descriptor-entry fields in support of long mode. The
specific change depends on whether the processor isin 64-bit mode or compatibility mode. Table 4-7
summarizesthe changesin the descriptor entry field when the descriptor entry isloaded into a segment
register (as opposed to when the segment register is subsequently used to access memory).

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor | Descriptor Long Mode
Field Type Compatibility Mode 64-Bit Mode
Code
Limit Data Same as legacy x86 Same as legacy x86
System
Offset Gate Expanded to 64 bits Expanded to 64 bits
Code
Base Data Same as legacy x86
Same as legacy x86
System
Selector Gate Same as legacy x86
IsT?! Gate Interrupt and trap gates only. (New for long mode.)
Code
Baa Same as legacy x86 Same as legacy x86

Types 02h, 09h, and 0Bh redefined
Types 01h and 03h areillegal
Types 0Ch, OEh, and OFh redefined
Types 04h—07h areillegal

Sand Type System

Gate

Note(s):
1. Not available (reserved) in legacy mode.

98 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor | Descriptor Long Mode
Field Type Compatibility Mode 64-Bit Mode

Code

DPL Data Same as legacy x86 Same as legacy x86
System
Gate
Code

Present Data Same as legacy x86 Same as legacy x86
System
Gate
Code D=0 Indicates 64-bit address, 32-bit data

Default Size Same as legacy x86 D=1 Reserved
Data Same as legacy x86

Longl Code Specifies compatibility mode Specifies 64-bit mode
Code

Granularity Data Same as legacy x86 Same as legacy x86
System
Code

Available Data Same as legacy x86 Same as legacy x86
System

Note(s):

1. Not available (reserved) in legacy mode.

4.9 Segment-Protection Overview

The AMDG64 architecture is designed to fully support the legacy segment-protection mechanism. The
segment-protection mechanism provides system software with the ability to restrict program access
into other software routines and data.

Segment-level protection remains enabled in compatibility mode. 64-bit mode eliminates most type
checking, and limit checking is not performed, except on accesses to system-descriptor tables.

The preferred method of implementing memory protection in along-mode operating systemisto rely
on the page-protection mechanism as described in “ Page-Protection Checks’” on page 151. System
software still needs to create basic segment-protection data structures for 64-bit mode. These
structuresare simplified, however, by the use of the flat-memory model in 64-bit mode, and the limited
segmentation checks performed when executing in 64-bit mode.

Segmented Virtual Memory [AM D PUb“C Use] 99

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

4.9.1 Privilege-Level Concept

Segment protection is used to isolate and protect programs and data from each other. The segment-
protection mechanism supports four privilege levelsin protected mode. The privilegelevels are
designated with anumerical value from O to 3, with O being the most privileged and 3 being the least
privileged. System software typically assignsthe privilege levelsin the following manner:

* Privilege-level 0 (most privilege)—Thislevel isused by critical system-software components that
require direct access to, and control over, all processor and system resources. This can include
platform firmware, memory-management functions, and interrupt handlers.

* Privilege-levels 1 and 2 (moderate privilege)—These levels are used by less-critical system-
software services that can access and control a limited scope of processor and system resources.
Software running at these privilege levels might include some device drivers and library routines.
These software routines can call more-privileged system-software services to perform functions
such as memory garbage-collection and file allocation.

* Privilege-level 3 (least privilege)—Thislevel is used by application software. Software running at
privilege-level 3 is normally prevented from directly accessing most processor and system
resources. Instead, applications request access to the protected processor and system resources by
calling more-privileged service routines to perform the accesses.

Figure 4-25 shows the relationship of the four privilege levelsto each other.

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2
Privilege 3 Application Programs

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level Types

There are three types of privilege levels the processor uses to control access to segments. These are
CPL, DPL, and RPL.

Current Privilege-Level. Thecurrent privilege-level (CPL) isthe privilege level at which the
processor is currently executing. The CPL isstored in an internal processor register that isinvisibleto

100 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

software. Software changes the CPL by performing a control transfer to adifferent code segment with
anew privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) isthe privilege level that system
software assigns to individual segments. The DPL isused in privilege checks to determine whether
software can access the segment referenced by the descriptor. In the case of gate descriptors, the DPL
determines whether software can access the descriptor reference by the gate. The DPL is stored in the
segment (or gate) descriptor.

Requestor Privilege-Level. Therequestor privilege-level (RPL) reflectsthe privilegelevel of the
program that created the selector. The RPL can be used to et acalled program know the privilege level
of the program that initiated the call. The RPL is stored in the selector used to reference the segment
(or gate) descriptor.

The following sections describe how the CPL, DPL, and RPL are used by the processor in performing
privilege checks on data accesses and control transfers. Failure to pass a protection check generally
causes an exception to occur.

4.10 Data-Access Privilege Checks

4.10.1 Accessing Data Segments

Before loading a data-segment register (DS, ES, FS, or GS) with a segment sel ector, the processor
checksthe privilege levels asfollowsto seeif accessis allowed:

1. The processor compares the CPL with the RPL in the data-segment selector and determines the
effective privilege level for the data access. The processor sets the effective privilege level to the
lowest privilege (numerically-higher value) indicated by the comparison.

2. The processor compares the effective privilege level with the DPL in the descriptor-table entry
referenced by the segment selector. If the effective privilege level is greater than or equal to
(numerically lower-than or equal-to) the DPL, then the processor loads the segment register with
the data-segment selector. The processor automatically loads the corresponding descriptor-table
entry into the hidden portion of the segment register.

If the effective privilege level is lower than (numerically greater-than) the DPL, a genera-
protection exception (#GP) occurs and the segment register is not loaded.

Figure 4-26 on page 102 shows two examples of data-access privilege checks.

Segmented Virtual Memory [AMD PUb“C Use] 101

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Effective

e | | CPL=3 I Privilege
‘—»_3

Data | RPL=0 I @
Selector - Access Denied Data
|—>@ """"""""" > Segment
| DPL=2
] Descriptor

Example 1: Privilege Check Fails

Effective
& | | CPL=0 I Privilege
Data
Selector | RPL0 I Access Allowed Data
|—’® > Segment
| DPL=2
Descriptor

Example 2: Privilege Check Passes

Figure 4-26. Data-Access Privilege-Check Examples
Example 1 in Figure 4-26 shows afailing data-access privilege check. The effective privilegelevel is3
because CPL=3. Thisvalueis greater than the descriptor DPL, so access to the data segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege check. Here, the effective privilege
level is 0 because both the CPL and RPL have values of 0. Thisvalue isless than the descriptor DPL,
so access to the data segment is allowed, and the data-segment register is successfully loaded.

4.10.2 Accessing Stack Segments

Before loading the stack segment register (SS) with a segment selector, the processor checks the
privilege levels asfollowsto seeif accessis allowed:

102 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

1. The processor checks that the CPL and the stack-selector RPL are equal. If they are not equal, a
general-protection exception (#GP) occurs and the SS register is not |oaded.

2. The processor compares the CPL with the DPL in the descriptor-table entry referenced by the
segment selector. The two values must be equal. If they are not equal, a #GP occurs and the SS
register is not loaded.

Figure 4-27 shows two examples of stack-access privilege checks. In Example 1 the CPL, stack-
selector RPL, and stack segment-descriptor DPL are all equal, so accessto the stack segment using the
SSregister isalowed. In Example 2, the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL isnot equal to the stack segment-descriptor DPL, and accessto the
stack segment through the SSregister is denied.

cs | | cpL=3 |
L
Stack | | RPL=3 I
Selector - Access Allowed Stack
Segment
| DPL=3
Descriptor
Example 1: Privilege Check Passes
cs | [cr=2 |
).
Stack | | RPL=3 I
Selector - Access Denied Stack
Segment
| DPL=3
Descriptor

Example 2: Privilege Check Fails

Figure 4-27. Stack-Access Privilege-Check Examples

Segmented Virtual Memory [AM D PUb“C Use] 103

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

4.11 Control-Transfer Privilege Checks

Control transfers between code segments (also called far control transfers) cause the processor to
perform privilege checksto determine whether the source program is allowed to transfer control to the
target program. If the privilege checks pass, accessto the target code-segment is granted. When access
is granted, the target code-segment selector isloaded into the CSregister. TherlPregister isupdated
with the target CS offset taken from either the far-pointer operand or the gate descriptor. Privilege
checks are not performed during near control transfers because such transfers do not change
segments.

The following mechanisms can be used by software to perform far control transfers:

» System-software control transfers using the system-call and system-return instructions. See
“SYSCALL and SYSRET” on page 163 and “SY SENTER and SY SEXIT (Legacy Mode Only)”
on page 165 for more information on theseinstructions. SY SCALL and SY SRET arethe preferred
method of performing control transfersin long mode. SYSENTER and SYSEXIT are not supported
inlong mode.

» Direct control transfersusing CALL and IMPinstructions. These are discussed in the next section,
“Direct Control Transfers.”

» Call-gate control transfers using CALL and JMP instructions. These are discussed in “Control
Transfers Through Call Gates’ on page 108.

* Return control transfers using the RET instruction. These are discussed in “Return Control
Transfers’ on page 115.

* Interrupts and exceptions, including the INTn and IRET instructions. These are discussed in
Chapter 8, “Exceptions and Interrupts.”

» Task switchesinitiated by CALL and IMPinstructions. Task switches are discussed in Chapter 12,
“Task Management.” The hardware task-switch mechanismis not supported in long mode.

4.11.1 Direct Control Transfers

A direct control transfer occurs when software executes afar-CALL or afar-JMPinstruction without
using acall gate. The privilege checksand type of access allowed asaresult of adirect control transfer
depends on whether the target code segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the target code-segment is conforming (see
“Conforming (C) Bit” on page 86 for more information on the conforming bit).

Privilege levels are not changed as aresult of adirect control transfer. Program stacks are not
automatically switched by the processor as they are with privilege-changing control transfers through
call gates (see “ Stack Switching” on page 112 for more information on automatic stack switching
during privilege-changing control transfers).

Nonconforming Code Segments. Software can perform adirect control transfer to a
nonconforming code segment only if the target code-segment descriptor DPL and the CPL are equal
and the RPL islessthan or equal to the CPL. Software must use acall gate to transfer control to a

104 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

more-privileged, nonconforming code segment (see“ Control Transfers Through Call Gates’ on
page 108 for more information).

Infar callsand jumps, the far pointer (CS:rlIP) references the target code-segment descriptor. Before
loading the CS register with a nonconforming code-segment selector, the processor checks as follows
to seeif accessisallowed:

1. DPL = CPL Check—The processor compares the target code-segment descriptor DPL with the
currently executing program CPL. If they are equal, the processor performs the next check. If they
are not equal, a general-protection exception (#GP) occurs.

2. RPL < CPL Check—The processor compares the target code-segment selector RPL with the
currently executing program CPL. If the RPL islessthan or equal to the CPL, accessisallowed. If
the RPL is greater than the CPL, a#GP exception occurs.

If accessisallowed, the processor loads the CS and rI P registers with their new values and begins
executing from the target location. The CPL isnot changed—the target-CS selector RPL valueis
disregarded when the selector isloaded into the CSregister.

Figure 4-28 on page 106 shows three examples of privilege checks performed asaresult of afar
control transfer to a nonconforming code-segment. In Example 1, accessis allowed because CPL =
DPL and RPL < CPL. In Example 2, accessis denied because CPL # DPL. In Example 3, accessis
denied because RPL > CPL.

Segmented Virtual Memory [AM D PUb“C Use] 105

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Code
Selector | | RPL=0 I Access
Access Allowed
cs | | crL=2 | ? >
Code
Access
| DPL=2 Allowed Segment
Descriptor
Example 1: Privilege Check Passes
Code
Selector | B Access
Allowed
Access Denied
cs | [cr=2) @ »
—E) SR Code
Access Segment
| DPL=3 Denied
Descriptor
Example 2: Privilege Check Fails
Code
Selector | | RPL=3 I Access
j— Ll
¥ Access Denied
cs| | cPL=2 | o >
° Code
Access Segment
| DPL=2 Allowed
Descriptor

Example 3: Privilege Check Fails

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

Conforming Code Segments. Onadirect control transfer to a conforming code segment, the target
code-segment descriptor DPL can be lower than (at agreater privilege) the CPL. Beforeloading the

106 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

CSregister with aconforming code-segment selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If the DPL islessthan or equal to the CPL,
accessisallowed. If the DPL is greater than the CPL, a#GP exception occurs.

On an access to a conforming code segment, the RPL isignored and not involved in the privilege
check.

When accessis allowed, the processor |oads the CS and rlP registers with their new values and begins
executing from the target location. The CPL isnot changed—the target CS-descriptor DPL valueis
disregarded when the selector isloaded into the CSregister. The target program runs at the same
privilege asthe program that called it.

Figure 4-29 shows two examples of privilege checks performed as aresult of adirect control transfer
to aconforming code segment. In Example 1, accessis allowed because the CPL of 3 isgreater than
the DPL of 0. Asthetarget code selector isloaded into the CSregister, the old CPL value of 3 replaces
thetarget-code selector RPL value, and the target program executes with CPL=3. In Example 2, access
is denied because CPL < DPL.

Code | | I
Selector
cs | |cpL=3 |
Access Allowed
—) o Cote
Segment
| DPL=0
Descriptor
Example 1: Privilege Check Passes
Code | | I
Selector
Cs | | cpL=0 |
Access Denied
() SR | Code
Segment
| DPL=3
Descriptor

Example 2: Privilege Check Fails

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

Segmented Virtual Memory [AM D PUb“C Use] 107

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

4.11.2 Control Transfers Through Call Gates

Control transfersto more-privileged code segments are accomplished through the use of call gates.
Call gatesare atype of descriptor that contain pointersto code-segment descriptors and control access
to those descriptors. System software uses call gates to establish protected entry pointsinto system-
service routines.

Transfer Mechanism. The pointer operand of afar-CALL or far-JMPinstruction consists of two
pieces. a code-segment selector (CS) and a code-segment offset (r1P). In a call-gate transfer, the CS
selector pointsto a call-gate descriptor rather than a code-segment descriptor, and therlPisignored
(but required by the instruction).

Figure 4-30 shows a call-gate control transfer in legacy mode. The call-gate descriptor contains
segment-sel ector and segment-offset fields (see “ Gate Descriptors’ on page 90 for adetailed
description of the call-gate format and fields). These two fields perform the same function asthe
pointer operand in adirect control-transfer instruction. The segment-sel ector field pointsto the target
code-segment descriptor, and the segment-offset field is the instruction-pointer offset into the target
code-segment. The code-segment base taken from the code-segment descriptor is added to the offset
field in the call-gate descriptor to create the target virtual address (linear address).

Virtual-Address

Space
Far Pointer

Segment Selector Instruction Offset

Descriptor Table

B — Call-Gate

Descriptor

v'/
'DPL ! Code-Segment Selector

_> --------------------------------------- mmmmmmmemm--
Code-Segment Offset :@—» _____ Virtual Address

A

Code Segment

v

EDPL Code-Segment Limit

Code-Segment
Descriptor

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

108 [AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Figure 4-31 shows a call-gate control transfer in long mode. The long-mode call-gate descriptor
format is expanded by 64 bitsto hold afull 64-bit offset into the virtual-address space. Only long-
mode call gates can be referenced in long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit types, and 16-hit call-gate types are
illegal.

Far Pointer Virtual-Address
Space
Segment Selector Instruction Offset
Descriptor Table [Call “Gate
—— Descriptor
v
[CodeSegmentOffset (6332)
e T L
' DPL ! Code-Segment Selector
Code-Segment Offset (31:0) < \{i[tL_Ja_l _Agcjr_eszs_ .
' DPL | Code-Segment Limit |
Code-Segment Base)
*
Code-Segment Flat CodesS
___________ Descriptor at Code-Segment
[] Unused

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment descriptor. In 64-bit mode, the code-
segment descriptor base-address and limit fields areignored. The target virtual-address is the 64-bit
offset field in the expanded call-gate descriptor.

Privilege Checks. Beforeloading the CSregister with the code-segment selector located in the call
gate, the processor performs three privilege checks. The following checks are performed when either
conforming or nonconforming code segments are referenced:

1. The processor compares the CPL with the call-gate DPL from the call-gate descriptor (DPL).
The CPL must be numerically less than or equal to DPL g for this check to pass. In other words,
the following expression must be true: CPL < DPL .

Segmented Virtual Memory [AM D PUb“C Use] 109

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

2. The processor compares the RPL in the call-gate selector with DPLg. The RPL must be
numerically less than or equal to DPLg for this check to pass. In other words, the following
expression must be true: RPL < DPL .

3. The processor compares the CPL with the target code-segment DPL from the code-segment
descriptor (DPLg). The type of comparison varies depending on the type of control transfer.

- When acall—or ajump to a conforming code segment—is used to transfer control through a
call gate, the CPL must be numerically greater than or equal to DPL g for this check to pass.
(This check prevents control transfersto less-privileged programs.) In other words, the
following expression must betrue: CPL DPLg

- WhenaJMPinstruction is used to transfer control through acall gate to anonconforming code
segment, the CPL must be numerically equal to DPL g for this check to pass. (JMPinstructions
cannot change CPL.) In other words, the following expression must be true: CPL = DPLg.

Figure 4-32 on page 111 showstwo examples of call-gate privilege checks. In Example 1, all privilege
checks pass asfollows:

» Thecall-gate DPL (DPLg) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

» The selector referencing the call gate passes its privilege check because the RPL is numerically
lessthan or equal to DPL .

» Thetarget code segment is at the highest privilege level (DPL g = 0). This means software running
at any privilege level can access the target code segment through the call gate.

110 [AMD PUb“C Use] Segmented Virtual Memory

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Cs | | cpL=2 |
Call-Gate —
Selector | | RPL=S I
]
| DPL=3
> Code
Call-Gate Descriptor _‘ Segment
| DPL=0 Access Allowed

Code-Segment Descriptor

Example 1: Privilege Check Passes

Cs | | crL=2 |
Call-Gate
Selector | | RPL=3 I

|

| DPL=0
Code
Call-Gate Descriptor _‘ Segment
DPL=3 cT
— A _cc_es:s_D_erﬁe_d _______ |

Code-Segment Descriptor

Example 2: Privilege Check Fails

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, al privilege checksfail asfollows:

» Thecall-gate DPL (DPL) specifiesthat only software at privilege-level O can accessthe gate. The
current program does not have enough privilege to access the call gate because its CPL is 2.

» The selector referencing the call-gate descriptor does not have enough privilege to complete the
reference. I1ts RPL isnumerically greater than DPL .

Segmented Virtual Memory [AM D PUbllC Use] 111

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

* The target code segment is at a lower privilege (DPLg = 3) than the currently running software
(CPL = 2). Transitions from more-privileged software to less-privileged software are not allowed,
so this privilege check failsas well.

Although all three privilege checksfailed in Example 2, failing only one check is sufficient to deny
accessinto the target code segment.

Stack Switching. The processor performs an automatic stack switch when acontrol transfer causesa
changein privilege levelsto occur. Switching stacks isolates more-privileged software stacks from
less-privileged software stacks and provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, asis done when transferring control using acall gate, the
processor uses the corresponding stack pointer (privilege-level 0, 1, or 2) stored in the task-state
segment (TSS). Theformat of the stack pointer stored in the TSS depends on the system-software
operating mode:

* Legacy-mode system software stores a 32-bit ESP value (stack offset) and 16-bit SS selector
register value in the TSSfor each of three privilegelevels0, 1, and 2.

* Long-mode system software stores a 64-bit RSP value in the TSS for privilege levels 0, 1, and 2.
No SSregister value is stored in the TSS because in long mode a call gate must reference a 64-hbit
code-segment descriptor. 64-bit mode does not use segmentation, and the stack pointer consists
solely of the 64-bit RSP. Any value loaded in the SSregister isignored.

See “ Task-Management Resources’ on page 346 for more information on the legacy-mode and long-
mode TSS formats.

Figure 4-33 on page 113 shows a 32-bit stack in legacy mode before and after the automatic stack
switch. This particular example assumes that parameters are passed from the current program to the
target program. The process followed by legacy mode in switching stacks and copying parametersis:

1. The target code-segment DPL is read by the processor and used as an index into the TSS for
selecting the new stack pointer (SSESP). For example, if DPL=1 the processor selects the
SS:ESPfor privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP values read from the TSS.

3. The old values of the SS and ESP registers are pushed onto the stack pointed to by the new
SSESP.

4. The 5-bit count field is read from the call-gate descriptor.

5. The number of parameters specified in the count field (up to 31) are copied from the old stack to
the new stack. The size of the parameters copied by the processor depends on the call-gate size:
32-bit call gates copy 4-byte parameters and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the EIP of the instruction following the calling instruction.

112 [AMD PUb“C Use] Segmented Virtual Memory

AMDA

24593—Rev. 3.36—O0October 2020

AMDG64 Technology

7. The CSregister isloaded from the segment-selector field in the call-gate descriptor, and the EIPis
loaded from the offset field in the call-gate descriptor.

8. Thetarget program begins executing with the instruction referenced by new CSEIP.

old New
32-Bit Stack 32-Bit Stack
Before CALL After CALL
0ld SS +(N*4)+12
Old ESP +(n*4)+8
Parameter 1 | +(n-1)*4 Parameter 1 | +(n*4)+4
Parameter 2 | +(n-2)*4 Parameter 2 | +(n*4)

Parameter n

Parameter n

Figure 4-33.

+8

Old CS

] 0ld sSESP |

+4

Old EIP

<—|New SS:ESP

Stack Switch

Legacy-Mode 32-Bit Stack Switch, with Parameters

Figure 4-34 shows a 32-bit stack in legacy mode before and after the automatic stack switch when no
parameters are passed (count=0). M ost software does not use the call-gate descriptor count-field to
pass parameters. System software typically defines linkage mechanisms that do not rely on automatic

parameter copying.

old
32-Bit Stack
Before CALL

New

32-Bit Stack

After CALL

Old SS

Old ESP

Old CS

Old EIP

Stack Switch

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 114 shows along-mode stack switch. In long mode, all call gates must reference
64-bit code-segment descriptors, so along-mode stack switch uses a 64-bit stack. The process of

Segmented Virtual Memory

[AMD Public Use]

113

AMDAQ

AM

D64 Technology 24593—Rev. 3.36—O0ctober 2020

switching stacksin long modeis similar to switching in legacy mode when no parameters are passed.
The processisasfollows:

1

The target code-segment DPL is read by the processor and used as an index into the 64-bit TSS
for selecting the new stack pointer (RSP).

The RSP register is loaded with the new RSP value read from the TSS. The SS register is |oaded
with a null selector (SS=0). Setting the new SS selector to null allows proper handling of nested
control transfers in 64-bit mode. See “Nested Returns to 64-Bit Mode Procedures’ on page 116
for additional information.

Asin legacy mode, it is desirable to keep the stack-segment requestor privilege-level (SS.RPL)
equal to the current privilege-level (CPL). When using a call gate to change privilege levels, the
SS.RPL is updated to reflect the new CPL. The SS.RPL isrestored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

The old values of the SS and RSP registers are pushed onto the stack pointed to by the new RSP,
The old SS value is popped on a subsequent far return. This allows system software to set up the
SS selector for a compatibility-mode process by executing a RET (or IRET) that changes the
privilege level.

The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the RIP of the instruction following the calling instruction.

The CS register is loaded from the segment-selector field in the long-mode call-gate descriptor,
and the RIPis loaded from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction referenced by the new RIP.

All

old New
64-Bit Stack 64-Bit Stack
Before CALL After CALL
0Old SS +24
OldRSP [+
0ld CS +8
L old ss:Rsp ORI e NewRSP J(ss=0+ new_cpl)

Stack Switch

Figure 4-35. Stack Switch—Long Mode

long-mode stack pushesresulting from a privilege-level-changing far call are eight-byteswide and

increment the RSP by eight. Long mode ignores the call-gate count field and does not support the
automatic parameter-copy feature found in legacy mode. Software can access parameters on the old
stack, if necessary, by referencing the old stack segment selector and stack pointer saved on the new
process stack.

114

[AMD PUbllC Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

4.11.3 Return Control Transfers

Returnsto calling programs can be performed by using the RET instruction. The following types of
returns are possible:

* Near Return—Near returns perform control transfers within the same code segment, so the CS
register is unchanged. The new offset is popped off the stack and into the riP register. No privilege
checks are performed.

* Far Return, Same Privilege—A far return transfers control from one code segment to another.
When the original code segment is at the same privilege level as the target code segment, a far
pointer (CS:rIP) is popped off the stack and the RPL of the new code segment (CS) is checked. If
the requested privilege level (RPL) matchesthe current privilegelevel (CPL), then areturnismade
to the same privilege level. This prevents software from changing the CS value on the stack in an
attempt to return to higher-privilege software.

» Far Return, Less Privilege—Far returns can change privilege levels, but only to alower-privilege
level. In this case a stack switch is performed between the current, higher-privilege program and
the lower-privilege return program. The CS-register and rIP-register values are popped off the
stack. The lower-privilege stack pointer is also popped off the stack and into the SS register and
rSPregister. The processor checks both the CS and SS privilege levelsto ensure they are equal and
at alesser privilege than the current CS.

In the case of nested returns to 64-bit mode, a null selector can be popped into the SSregister. See
“Nested Returns to 64-Bit Mode Procedures’ on page 116.

Far returns also check the privilege levels of the DS, ES, FS and GS selector registers. If any of
these segment registers have a selector with a higher privilege than the return program, the
segment register isloaded with the null selector.

Stack Switching. The stack switch performed by afar return to alower-privilege level reversesthe
stack switch of acall gateto ahigher-privilege level, except that parameters are never automatically

copied as part of areturn. The process followed by afar-return stack switch inlong mode and legacy
modeis.

1. The return code-segment RPL is read by the processor from the CS value stored on the stack to
determine that alower-privilege control transfer is occurring.

2. The return-program instruction pointer is popped off the current-program (higher privilege) stack
and loaded into the CS and rIP registers.

3. The return instruction can include an immediate operand that specifies the number of additional
bytes to be popped off of the stack. These bytes may correspond to the parameters pushed onto the
stack previously by a call through a call gate containing a non-zero parameter-count field. If the
return includes the immediate operand, then the stack pointer is adjusted upward by adding the
specified number of bytesto the rSP.

4. The return-program stack pointer is popped off the current-program (higher privilege) stack and
loaded into the SS and rSP registers. In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register.

Segmented Virtual Memory [AM D PUb“C Use] 115

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

The operand size of afar return determinesthe size of stack pops when switching stacks. If afar return
isused in 64-bit mode to return from a prior call through along-mode call gate, the far return must use
a64-bit operand size. The 64-bit operand size allows the far return to properly read the stack
established previously by thefar call.

Nested Returns to 64-Bit Mode Procedures. Inlong mode, afar call that changes privilege levels
causes the SS register to be loaded with anull selector (thisis the same action taken by an interrupt in
long mode). If the called procedure performs another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame, and another null selector isloaded into
the SSregister. Using anull selector in thisway allowsthe processor to properly handle returns nested
within 64-bit-mode procedures and interrupt handlers.

Normally, aRET that pops anull selector into the SSregister causes a general -protection exception
(#GP) to occur. However, in long mode, the null selector acts as aflag indicating the existence of
nested interrupt handlers or other privileged software in 64-bit mode. Long mode allows RET to pop a
null selector into SS from the stack under the following conditions:

* Thetarget modeis 64-bit mode.
* Thetarget CPL islessthan 3.

In this case, the processor does not load an SS descriptor, and the null selector isloaded into SS
without causing a#GP exception.

4.12 Limit Checks

Except in 64-bit mode, limit checks are performed by all instructions that reference memory. Limit
checks detect attempts to access memory outside the current segment boundary, attempts at executing
instructions outside the current code segment, and indexing outside the current descriptor table. If an
instruction failsalimit check, either (1) ageneral-protection exception occurs for all other segment-
limit violations or (2) a stack-fault exception occurs for stack-segment limit violations.

In 64-bit mode, segment limits are not checked during accesses to any segment referenced by the CS,
DS, ES, FS, GS, and SS selector registers. Instead, the processor checksthat the virtual addresses used
to reference memory are in canonical-address form. In 64-bit mode, aswith legacy mode and
compatibility mode, descriptor-table limits are checked.

4.12.1 Determining Limit Violations

To determine segment-limit violations, the processor checksavirtual (linear) addressto seeif it falls
outside the valid range of segment offsets determined by the segment-limit field in the descriptor. If
any part of an operand or instruction falls outside the segment-offset range, alimit violation occurs.
For example, a doubleword access, two bytes from an upper segment boundary, causes a segment
violation because half of the doubleword is outside the segment.

116 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Three bits from the descriptor entry are used to control how the segment-limit field isinterpreted: the
granularity (G) bit, the default operand-size (D) bit, and for data segments, the expand-down (E) bit.
See “Legacy Segment Descriptors’ on page 84 for adetailed description of each bit.

For all segments other than expand-down segments, the minimum segment-offset is 0. The maximum
segment-offset depends on the value of the G bit:

o If G=0 (byte granularity), the maximum allowable segment-offset is equal to the value of the
segment-limit field.

» |f G=1 (4096-byte granularity), the segment-limit field isfirst scaled by 4096 (1000h). Then 4095
(OFFFh) is added to the scaled value to arrive at the maximum allowabl e segment-offset, as shown
in the following equation:

maximum segment-offset = (limit x 1000h) + OFFFh
For example, if the segment-limit field is 0100h, then the maximum allowable segment-offset is
(0100h x 1000h) + OFFFh =10 1FFFh.

In both cases, the maximum segment-size is specified when the descriptor segment-limit field is
OF_FFFFh,

Expand-Down Segments. Expand-down data segments are supported in legacy mode and
compatibility mode but not in 64-bit mode. With expand-down data segments, the maximum segment
offset depends on the value of the D bit in the data-segment descriptor:

e If D=0 the maximum segment-offset isO0_FFFFh.
e If D=1 the maximum segment-offsetisO_FFFF_FFFFh.

The minimum allowable segment offset in expand-down segments depends on the value of the G bit:

» If G=0 (byte granularity), the minimum allowable segment offset isthe segment-limit value plus 1.

For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
0101h.

* If G=1 (4096-byte granularity), the segment-limit value in the descriptor is first scaled by 4096
(1000h), and then 4095 (OFFFh) is added to the scaled value to arrive at a scaled segment-limit
value. The minimum allowable segment-offset is this scaled segment-limit value plus 1, as shown
in the following equation:
minimum segment-offset = (limit x 1000) + OFFFh + 1
For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is

(0100h x 1000h) + OFFFh + 1= 10_1000h.

For expand-down segments, the maximum segment size is specified when the segment-limit valueis
0.

Segmented Virtual Memory [AM D PUbllC Use] 117

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

4.12.2 Data Limit Checks in 64-bit Mode

In 64-bit mode, data reads and writes are not normally checked for segment-limit violations. When
EFER.LMSLE = 1, reads and writesin 64-bit mode at CPL > 0, using the DS, ES, FS, or SS segments,
have a segment-limit check applied.

Thislimit-check uses the 32-bit segment-limit to find the maximum allowable address in the top 4GB
of the 64-bit virtual (linear) address space.

Table 4-8. Segment Limit Checks in 64-Bit Mode

Memory Address Effect of Limit Check
Linear Address £ (OFFFFFFFF_00000000h + 32-bit Limit) Access OK.
Linear Address > (OFFFFFFFF_00000000h + 32-bit Limit) Exception (#GP or #SS)

This segment-limit check does not apply to accesses through the GS segment, or to code reads. If the
DS, ES, FS, or SS segment is null or expand-down, the effect of the limit check is undefined. Data
segment limit checking in 64-bit modeis not supported by all processor implementations and has been
deprecated. If CPUID Fn8000_0008_EBX[EferL mlseUnsupported](bit 20) = 1, 64-bit mode segment
limit checking is not supported and attempting to enabl e thisfeature by setting EFER.LMSLE =1 will
result in a#GP exception.

4.13 Type Checks

Type checks prevent software from using descriptorsin invalid ways. Failing atype check resultsin an
exception. Type checks are performed using five bits from the descriptor entry: the Sbit and the 4-bit
Typefield. Together, these five bits are used to specify the descriptor type (code, data, segment, or
gate) and its access characteristics. See“Legacy Segment Descriptors’ on page 84 for adetailed
description of the S bit and Type-field encodings. Type checks are performed by the processor in
compatibility mode aswell aslegacy mode. Limited type checks are performed in 64-bit mode.

4.13.1 Type Checks in Legacy and Compatibility Modes

Thetype checks performed in legacy mode and compatibility mode are listed in the following sections.

Descriptor-Table Register Loads. Loadsintothe LDTR and TR descriptor-table registers are
checked for the appropriate system-segment type. The LDTR can only beloaded withan LDT
descriptor, and the TR only with a TSS descriptor. The checks are performed during any action that
causes these registers to be loaded. Thisincludes execution of the LLDT and LTR instructions and
during task switches.

Segment Register Loads. Thefollowing restrictionsare placed on the segment-descriptor typesthat
can be loaded into the six user segment registers:

* Only code segments can be loaded into the CSregister.
* Only writable data segments can be loaded into the SS register.

118 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

* Only thefollowing segment types can be loaded into the DS, ES, FS, or GSregisters.
- Read-only or read/write data segments.
- Readable code segments.

These checks are performed during any action that causes the segment registersto be loaded. This
includes execution of the MOV segment-register instructions, control transfers, and task switches.

Control Transfers. Control transfers (branches and interrupts) place additional restrictions on the
segment types that can be referenced during the transfer:

» The segment-descriptor type referenced by far CALLs and far IMPs must be one of the following:
- A code segment
- Acdl gateor atask gate
- Anavailable TSS (only alowed in legacy mode)
- Atask gate (only allowed in legacy mode)

e Only code-segment descriptors can be referenced by call-gate, interrupt-gate, and trap-gate
descriptors.

* Only TSSdescriptors can be referenced by task-gate descriptors.

* Thelink field (selector) in the TSS can only point to a TSS descriptor. This is checked during an
IRET control transfer to atask.

» Thefar RET and far IRET instructions can only reference code-segment descriptors.

» The interrupt-descriptor table (IDT), which is referenced during interrupt control transfers, can
only contain interrupt gates, trap gates, and task gates.

Segment Access. After asegment descriptor is successfully loaded into one of the segment
registers, reads and writesinto the segments are restricted in the following ways.

* Writesare not allowed into read-only data-segment types.
* Writesare not allowed into code-segment types (executable segments).
* Readsfrom code-segment types are not allowed if the readable (R) type bit is cleared to 0.

These checks are generally performed during execution of instructions that access memory.

4.13.2 Long Mode Type Check Differences

Compatibility Mode and 64-Bit Mode. Thefollowing type checksdiffer in long mode (64-bit mode
and compatibility mode) as compared to legacy mode:

* System Segments—System-segment types are checked, but the following types that are valid in
legacy mode areillegal in long mode:

- 16-bit available TSS.
- 16-bit busy TSS.

Segmented Virtual Memory [AM D PUb“C Use] 119

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

- Type-field encoding of 00h in the upper half of a system-segment descriptor to indicate an
illegal type and prevent access as alegacy descriptor.

» Gates—Gate-descriptor types are checked, but the following types that are valid in legacy mode
areillegal inlong mode:

- 16-bit cal gate.
- 16-bit interrupt gate.
- 16-bit trap gate.
- Task gate.
64-Bit Mode. 64-bit mode disables segmentation, and most of the segment-descriptor fields are

ignored. Thefollowing list identifies situations where type checksin 64-bit mode differ from thosein
compatibility mode and legacy mode:

» Code Segments—The readable (R) type bit is ignored in 64-bit mode. None of the legacy type-
checks that prevent reads from or writes into code segments are performed in 64-bit mode.

» Data Segments—Data-segment type attributes are ignored in 64-bit mode. The writable (W) and
expand-down (E) type bits are ignored. All data segments are treated as writable.

120 [AMD PUb“C Use] Segmented Virtual Memory

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

5 Page Translation and Protection

The x86 page-trand ation mechanism (or simply paging mechanism) enables system softwareto create
separate address spaces for each process or application. These address spaces are known as virtual-
address spaces. System software uses the paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of hierarchical address-trandlation tables
known collectively as page tables.

The paging mechanism and the page tables are used to provide each process with its own private
region of physical memory for storing its code and data. Processes can be protected from each other by
isolating them within the virtual -address space. A process cannot access physical memory that is not
mapped into its virtual-address space by system software.

System software can use the paging mechanism to selectively map physical-memory pagesinto
multiple virtual-address spaces. Mapping physical pages in this manner allows them to be shared by
multiple processes and applications. The physical pages can be configured by the page tablesto allow
read-only access. This prevents applications from altering the pages and ensurestheir integrity for use
by all applications.

Shared mapping istypically used to allow access of shared-library routines by multiple applications. A
read-only copy of the library routine is mapped to each application virtual-address space, but only a
single copy of thelibrary routineis present in physical memory. This capability also allows acopy of
the operating-system kernel and various device driversto reside within the application address space.
Applications are provided with efficient access to system services without requiring costly address-
space switches.

The system-software portion of the address space necessarily includes system-only data areas that
must be protected from accesses by applications. System software uses the page tablesto protect this
memory by designating the pages as supervisor pages. Such pages are only accessible by system
software.

When the supervisor mode execution prevention (SMEP) feature is supported and enabled, attempted
instruction fetches from user-mode accessible pages while in supervisor-mode triggers a page fault
(#PF). This protectsthe integrity of system software by preventing the execution of instructions at a
supervisor privilege level (CPL < 3) when these instructions could have been written or modified by
user-mode code.

Finally, system software can use the paging mechanism to map multiple, large virtual -address spaces
into amuch smaller amount of physical memory. Each application can use the entire 32-bit or 64-bit
virtual-address space. System software actively maps the most-frequently-used virtual-memory pages
into the available pool of physical-memory pages. Theleast-frequently-used virtual-memory pagesare
swapped out to the hard drive. This process is known as demand-paged virtual memory.

Page Translation and Protection [AM D PUbllC Use] 121

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

5.1 Page Translation Overview

The legacy x86 architecture provides support for trandating 32-bit virtual addressesinto 32-bit
physical addresses (larger physical addresses, such as 36-bit or 40-bit addresses, are supported asa
special mode). The AMDG64 architecture enhances this support to allow translation of 64-bit virtual
addresses into 52-hit physical addresses, although processor implementations can support smaller
virtual-address and physi cal-address spaces.

Virtual addresses are tranglated to physical addresses through hierarchical translation tables created
and managed by system software. Each table contains a set of entriesthat point to the next-lower table
in the translation hierarchy. A single table at onelevel of the hierarchy can have hundreds of entries,
each of which pointsto a unique table at the next-lower hierarchical level. Each lower-level table can
in turn have hundreds of entries pointing to tablesfurther down the hierarchy. Thelowest-level tablein
the hierarchy pointsto the translated physical page.

Figure 5-1 on page 123 shows an overview of the page-tranglation hierarchy used in long mode.

L egacy mode paging uses a subset of thistrandation hierarchy (the page-map level-4 table does not
exist in legacy mode and the PDP table may or may not be used, depending on which paging modeis
enabled). Asthisfigure shows, avirtual addressisdivided into fields, each of whichisused asan
offset into atrandation table. The complete translation chain is made up of all table entries referenced
by the virtual-address fields. The lowest-order virtual-address bits are used as the byte offset into the

physical page.

122 [AM D PUb“C Use] Page Translation and Protection

AMDA

24593—Rev. 3.36—O0October 2020

64-Bit Virtual Address

AMDG64 Technology

63 0
Sign Page Map Page Directory Page Directory Page Table Physical Page
Extension Level-4 Offset Pointer Offset Offset Offset Offset
|
—> PDPE B . R S —
---------- _> T T T T T T - mmomomomow o
------------------------ » PTE —
> PML4E — L » PDE _| ___________________
""""""""" Physical
I I . N A A Address
PageMap @ e N I [S
L A I S
Tabe v b
Page Directory Pointer Page Directory Page Physical Page
Table Table Table Frame
Page Map Base Register CR3
Figure 5-1. Virtual to Physical Address Translation—Long Mode
Page Translation and Protection 123

[AMD Public Use]

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Thefollowing physical-page sizes are supported: 4 Kbytes, 2 Mbytes, 4 Mbytes, and 1 Gbytes. Inlong
mode 4-Kbyte, 2-MByte, and 1-GByte sizes are available. In legacy mode 4-Kbyte, 2-MByte, and 4-
MByte sizes are available.

Virtual addresses are 32 bitslong, and physical addresses up to the supported physical-address size can
be used. The AMDG64 architecture enhances the legacy trandlation support by alowing virtual
addresses of up to 64 bitslong to be translated into physical addresses of up to 52 bitslong.

Currently, the AM D64 architecture defines amechanism for trandating 48-bit virtual addressesto 52-
bit physical addresses. The mechanism used to translate afull 64-bit virtual addressis reserved and
will be described in afuture AM D64 architectural specification.

5.1.1 Page-Translation Options

The form of page-trandation support available to software depends on which paging features are
enabled. Four controls are available for selecting the various paging alternatives:

» Page-Trandation Enable (CRO.PG)

* Physica-Address Extensions (CR4.PAE)

» Page-Size Extensions (CR4.PSE)

* Long-ModeActive (EFER.LMA)

Not all paging aternatives are available in all modes. Table 5-1 summarizes the paging support
available in each mode.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

F';hg;(;asls Page-Size Page- Page- Resulting | Maximum | Maximum
Mode Extensions Extensions Directory Directory Physical- Virtual Physical
(CRAPAE) (CR4.PSE) | Pointer Offset | PageSize Page Size | Address | Address
PDE.PS=0 | 4Kbyte
L.ong Mode PDPE.PS=0 y
(64-bit and Enabled - PDEPS=1 | 2Mbyte | 64-hit | 52-bit
compatability
PDE.PS=0 | 4Kbyte 52-bit
Enabled - .
PDE.PS=1 | 2 Mbyte 52-bit
Legacy Mode Disabled PDPE.PS=0 - 4 Kbyte 32-hit 32-hit
Disabled PDE.PS=0 | 4Kbhyte 32-bit
Enabled .
PDE.PS=1 | 4 Mbyte 40-bit

5.1.2 Page-Translation Enable (PG) Bit

Page tranglation is controlled by the PG bit in CRO (bit 31). When CRO.PG is set to 1, page transl ation
is enabled. When CRO.PG iscleared to 0, page trandlation is disabled.

124 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The AM D64 architecture uses CRO.PG to activate and deactivate long mode when long modeis
enabled. See “Enabling and Activating Long Mode” on page 458 for more information.

5.1.3 Physical-Address Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in CR4 (bit 5). When CR4.PAE isset to 1,
physical-address extensions are enabled. When CR4.PAE is cleared to 0, physical-address extensions
are disabled.

Setting CR4.PAE = 1 enables virtual addressesto be trandated into physical addresses up to 52 bits
long. Thisisaccomplished by doubling the size of paging data-structure entries from 32 bitsto 64 bits
to accommodate the larger physical base-addresses for physical-pages.

PAE must be enabled before activating long mode. See “ Enabling and Activating Long Mode” on
page 458.

5.1.4 Page-Size Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit 4). Setting CR4.PSE to 1 allows
operating-system software to use 4-Mbyte physical pagesin the trandlation process. The 4-Mbyte
physical pages can be mixed with standard 4-Kbyte physical pages or replace them entirely. The
selection of physical-page size is made on a page-directory-entry basis. See “Page Size (PS) Bit” on
page 145 for more information on physical-page size selection. When CR4.PSE is cleared to O, page-
Size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical -page size depends on the value of CR4.PSE
and CR4.PAE, asfollows:

e If physical-address extensions are enabled (CR4.PAE=1), the large physical-page sizeis 2 Mbytes,
regardless of the value of CR4.PSE.

» If physical-address extensions are disabled (CR4.PAE=0) and CR4.PSE=1, the large physical-
page sizeis4 Mbytes.

» If both CR4.PAE=0 and CR4.PSE=0, the only available page sizeis 4 Kbytes.

The value of CR4.PSE isignored when long mode is active. Thisis because physical-address
extensions must be enabled in long mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be translated from 32-bit virtual addresses
using 32-bit paging data-structure entries when 4-Mbyte physical-page sizes are selected. In this
specia case, CR4.PSE=1 and CR4.PAE=0. See “4-Mbyte Page Trandation” on page 129 for a
description of the 4-Mbyte PDE that supports 40-bit physical-address translation. The 40-bit physical-
address capability isan AM D64 architecture enhancement over the similar capability availablein the
legacy x86 architecture.

Page Translation and Protection [AM D PUb“C Use] 125

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

5.1.5 Page-Directory Page Size (PS) Bit

The page directory offset entry (PDE) and page directory pointer offset entry (PDPE) are data
structures used in page trandation (see Figure 5-1 on page 123). The page-size (PS) bit in the PDE (bit
7, referred to as PDE.PS) selects between standard 4-K byte physical-page sizesand larger (2-Mbyte or
4-Mbyte) physical-page sizes. The page-size (also PS) bit in the PDPE (bit 7, referred to as PDPE.PS)
sel ects between 2-Mbyte and 1-Gbyte physical-page sizes in long mode.

When PDE.PSisset to 1, large physical pages are used, and the PDE becomes the lowest level of the
trandation hierarchy. The size of the large page is determined by the values of CR4.PAE and
CRA4.PSE, as shown in Figure 5-1 on page 124. When PDE.PSis cleared to O, standard 4-K byte
physical pages are used, and the PTE isthe lowest level of the trandlation hierarchy.

When PDPE.PSissetto 1, 1-Gbyte physical pagesare used, and the PDPE becomesthe lowest level of
the tranglation hierarchy. Neither the PDE nor PTE are used for 1-Gbyte paging.

5.2 Legacy-Mode Page Translation

L egacy mode supports two forms of translation:

* Normal (non-PAE) Paging—This is used when physical-address extensions are disabled
(CR4.PAE=0). Entries in the page trandation table are 32 bits and are used to trandate 32-bit
virtual addressesinto physical addresses as large as 40 bits.

* PAE Paging—Thisisused when physical-address extensions are enabled (CR4.PAE=1). Entriesin
the page trandation table are 64 bits and are used to trandate 32-bit virtual addresses into physical
addresses aslarge as 52 hits.

Legacy paging uses up to three levels of page-trandation tables, depending on the paging form used
and the physical-page size. Entries within each table are selected using virtual-address bit fields. The
legacy page-trandation tables are:

» Page Table—Each page-table entry (PTE) pointsto aphysical page. If 4-Kbyte pages are used, the
pagetableisthe lowest level of the page-trandlation hierarchy. PTEs are not used when translating
2-Mbyte or 4-Mbyte pages.

» Page Directory—If 4-Kbyte pages are used, each page-directory entry (PDE) points to a page
table. If 2-Mbyte or 4-Mbyte pages are used, a PDE is the lowest level of the page-trandation
hierarchy and points to a physical page. In non-PAE paging, the page directory is the highest level
of the trandlation hierarchy.

» Page-Directory Pointer—Each page-directory pointer entry (PDPE) points to a page directory.
Page-directory pointersare only used in PAE paging (CR4.PAE=1), and are the highest level in the
legacy page-trandation hierarchy.

The trandlation-table-entry formats and how they are used in the various forms of legacy page
tranglation are described beginning on page 128.

126 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

5.2.1 CR3 Register

The CR3 register is used to point to the base address of the highest-level page-trandation table. The
base addressis either the page-directory pointer table or the page directory table. The CR3 register
format depends on the form of paging being used. Figure 5-2 on page 127 showsthe CR3 format when
normal (non-PAE) paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format when PAE paging
is used (CR4.PAE=1).

31 12 11 5 4 3 2 0
P|P

Page-Directory-Table Base Address Reserved C |W| Reserved
DT
Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

31 5 4 3 2 0
P|P

Page-Directory-Pointer-Table Base Address C |W| Reserved
DT

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

Table Base Address Field. Thisfield pointsto the starting physical address of the highest-level
page-trandlation table. The size of thisfield depends on the form of paging used:

* Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field occupies bits 31:12, and pointsto the
base address of the page-directory table. The page-directory table is aligned on a 4-Kbyte
boundary, with the low-order 12 address bits 11:0 assumed to be 0. Thisyields atotal base-address
sizeof 32 bits.

* PAE Paging (CR4.PAE=1)—Thisfield is 27 bitsand occupies bits 31:5. The CR3 register pointsto
the base address of the page-directory-pointer table. The page-directory-pointer tableis aligned on
a 32-byte boundary, with the low 5 address bits 4.0 assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has awriteback or writethrough caching policy. When PWT=0, the table
has awriteback caching policy. When PWT=1, the table has awritethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disableindicates whether the highest-
level page-trangdlation tableis cacheable. When PCD=0, thetableis cacheable. When PCD=1, thetable
isnot cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

Page Translation and Protection [AM D PUbllC Use] 127

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

5.2.2 Normal (Non-PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte physical pages, as described in the
following sections.

4-Kbyte Page Translation. 4-Kbyte physical-page trandlation is performed by dividing the 32-bit
virtual addressinto threefields. Each of the upper two fieldsis used as an index into atwo-level page-
trandation hierarchy. The virtual-address fields are used as follows, and are shown in Figure 5-4:

e Bits31:22 index into the 1024-entry page-directory table.
e Bits21:12 index into the 1024-entry page table.
* Bits11:0 provide the byte offset into the physical page.

Virtual Address

31 2221 12 11 0
Page-Directory| Page-Table
Offset Offset Page Offset
10 /10 12
Page- 4 Kbyte
Directory Page Physical
Table Table Page
— PTE ,3/2
3 L Physicall
Add
PDE / ress
— — |
31 12
Page-Directory Base CR3

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 on page 129 shows the format of the PDE (page-directory entry), and Figure 5-6 on

page 129 showsthe format of the PTE (page-table entry). Each table occupies 4 Kbytes and can hold
1024 of the 32-hit table entries. The fields within these table entries are described in * Page-
Trangdlation-Table Entry Fields’ on page 143.

Figure 5-5 shows bit 7 cleared to 0. Thisbit isthe page-size bit (PS), and specifies a4-Kbyte physical-
page trand ation.

Page Translation and Protection

10 [AMD Public Use]

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
31 12 11 9 8 7 6 5 4 3 2 10
[[PIP|U|R
Page-Table Base Address AVL G|IO|G|A|C|W|/|I]|P
N N D|T|S|W

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

31 12 11 9 8 7 6 5 4 3 2 1 0
P PIP|U|R

Physical-Page Base Address AVL G|A|D|A|C|W|/|I]|P
T D|IT|S|W

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page tranglation is only supported when page-size extensions
are enabled (CR4.PSE=1) and physical-address extensions are disabled (CR4.PAE=0).

PSE defines apage-size bit in the 32-bit PDE format (PDE.PS). Thisbit is used by the processor
during page trandlation to support both 4-Mbyte and 4-K byte pages. 4-Mbyte pages are sel ected when
PDE.PSisset to 1, and the PDE points directly to a4-Mbyte physical page. PTEsare not used in a4-
Mbyte page trandlation. If PDE.PSiscleared to O, or if 4-Mbyte page trandlation is disabled, the PDE
pointsto aPTE.

4-Mbyte page trandation is performed by dividing the 32-bit virtual addressinto two fields. Each field
isused asan index into asingle-level page-trandation hierarchy. The virtual-addressfields are used as
follows, and are shown in Figure 5-7 on page 130:

* Bits31:22 index into the 1024-entry page-directory table.
e Bits 21:0 provide the byte offset into the physical page.

Page Translation and Protection [AM D PUb“C Use] 129

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Virtual Address

31 2221 0
Page-Directory
Offset Page Offset
£10 A 22
Page- 4 Mbyte
Directory Physical
Table Page
. Physicalf
PDE /60 Address
— P —
31 12
Page-Directory Base CR3

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The AMDG64 architecture modifies the legacy 32-bit PDE format in PSE mode to increase physical-
address size support to 40 bits. Thisincrease in address size is accomplished by using bits 20:13 to
hold eight additional high-order physical-address bits. Bit 21 isreserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is enabled. The physical-page base-address
bits are contained in a split field. The high-order, physical-page base-address bits 39:32 are located in
PDE[20:13], and physical-page base-address bits 31:22 are located in PDE[31:22].

31 22 21 20 13 12 11 9 8 7 6 5

43 210
. P PlP|U|R

Physical-Page BaseAddress[31:22] | 0 | FYScd-PageBaseAddress | \ |\ a1 |G l1|D|alc|w|/]|/]P
[39:32] T D|T|s|w

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode
5.2.3 PAE Paging

PAE paging is used when physical-address extensions are enabled (CR4.PAE=1). PAE paging doubles
the size of page-trandlation table entries to 64 bits so that the table entries can hold larger physical

130 [AM D PUbllC Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

addresses (up to 52 bits). The size of each table remains 4 Kbytes, which means each table can hold
512 of the 64-bit entries. PAE paging also introduces athird-level page-trandation table, known asthe
page-directory-pointer table (PDP).

The size of large pagesin PAE-paging mode is 2 Mbytes rather than 4 Mbytes. PAE uses the page-
directory page-size bit (PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page sizes. PAE
automatically uses the page-size bit, so the value of CR4.PSE isignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page trand ation is performed by
dividing the 32-bit virtual addressinto four fields, each of the upper threefieldsisused asan index into
a 3-level page-trandation hierarchy. The virtual-address fields are described as follows and are shown
in Figure 5-9:

* Bits31:30index into a4-entry page-directory-pointer table.

e Bits29:21 index into the 512-entry page-directory table.

e Bits20:12 index into the 512-entry page table.

* Bits11:0 provide the byte offset into the physical page.

Virtual Address
31 30 29 2120 12 11 0

Page-Directory-| Page-Director Page-Table
gen y g y 9 Page Offset

Pointer Offset Offset Offset
A2 A9 79 A 12
Page- 4 Kbyte
Page- Directory 'll?:t?li Physical
Directory- Table Page
Pointer
Table L. 0%
PTE |4
52
> PDPE [~
5o+ Lo Physicalf
> Address
— PDE 74|_>
> — —— >
*This is an architectural limit. A given processor
31 5 implementation may support fewer bits.
—‘ Page-Directory-Pointer Base CR3

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Figures 5-10 through 5-12 show the legacy-mode 4-K byte transl ation-table formats:

Page Translation and Protection [AM D PUb“C Use] 131

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Figure 5-10 shows the PDPE (page-directory-pointer entry) format.
* Figure 5-11 showsthe PDE (page-directory entry) format.
» Figure 5-12 showsthe PTE (page-table entry) format.

The fields within these table entries are described in “ Page-Trand ation-Table Entry Fields’ on
page 143.

Figure 5-11 showsthe PDE.PS bit cleared to O (bit 7), specifying a4-Kbyte physical-page trand ation.

63 52 51 32
Page-Directory Base Address
ezl e (Thisisan architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 5 4 3 2 1 0
P|P
Page-Directory Base Address AVL Reserved, MBZ| C |W | MBZ | P
D|T

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

63 62 52 51 32
N Page-Table Base Address
X Rzl)22 (Thisisan architectural limit. A given implementation may support fewer bits.)
31 2 1 9 8 7 6 5 4 3 2 1 0
| | PIPIU|R
Page-Table Base Address AVL G|O|G|A|C|W|/]|I]|P
N N D|IT|S|W

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode

63 62 52 51 32
N Physical-Page Base Address
X Rzl)22 (Thisisan architectural limit. A given implementation may support fewer bits.)
31 2 1 9 8 7 6 5 4 3 2 1 0
P PIP{U|R
Physical-Page Base Address AVL G|A|D|A|C|W|/|I]|P
T D|IT|S|W

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page trandation is performed by dividing the 32-bit virtual
addressinto threefields. Each field isused as an index into a 2-level page-translation hierarchy. The
virtual-address fields are described as follows and are shown in Figure 5-13 on page 133:

* Bits31:30 index into the 4-entry page-directory-pointer table.

132 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

* Bits29:21 index into the 512-entry page-directory table.
* Bits20:0 provide the byte offset into the physical page.

Virtual Address

31 30 29 2120 0
Page-Directory-| Page-Directory
Pointer Offset Offset Page Offset
/, 2 /’9 /, 21
Page- 2 Mbyte
Page- Directory Physical
Directory- Table Page
Pointer
Table
52*
> PDPE [
5o Lo Physicall
> Address
—> PDE [7#
=— > I
*This is an architectural limit. A given process:
31 5 implementation may support fewer bits.
—‘ Page-Directory-Pointer Base Register CR3

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode
Figure 5-14 showstheformat of the PDPE (page-directory-pointer entry) and Figure 5-15 on page 134
shows the format of the PDE (page-directory entry). PTEs are not used in 2-Mbyte page trangdlations.

Figure 5-15 on page 134 showsthe PDE.PS bit set to 1 (bit 7), specifying a 2-Mbyte physical-page
trandation.

63 52 51 32
Page-Directory Base Address
Reserved, MBZ (Thisisan architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 5 4 3 2 1 0
P|P
Page-Directory Base Address AVL Reserved, MBZ| C |W | MBZ | P
DT

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

Page Translation and Protection

[AMD Public Use] 59

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 52 51 32
N Physical-Page Base Address
X REEees, L= (Thisisan architectural limit. A given implementation may support fewer bits.)
31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0
P PIP[U|R
Physical-Page Base Address Reserved, MBZ A AVL G|1|D|A|C|W|/|I]|P
T D|T|S|W

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation

L ong-mode page trand ation requires the use of physical-address extensions (PAE). Before activating
long mode, PAE must be enabled by setting CR4.PAE to 1. Activating long mode before enabling PAE
causes a general-protection exception (#GP) to occur.

The PAE-paging data structures support mapping of 64-bit virtual addressesinto 52-bit physical
addresses. PAE expands the size of legacy page-directory entries (PDESs) and page-table entries
(PTEs) from 32 bitsto 64 bits, allowing physical-address sizes of greater than 32 bits.

The AM D64 architecture enhances the page-directory-pointer entry (PDPE) by defining previously
reserved bitsfor access and protection control. A new trang ation table is added to PAE paging, called
the page-map level-4 (PML4). The PMLA4 table precedes the PDPtable in the page-trand ation
hierarchy.

Because PAE is always enabled in long mode, the PS bit in the page directory entry (PDE.PS) selects
between 4-Kbyte and 2-Mbyte page sizes, and the CR4.PSE bit isignored. When 1-Gbyte pages are
supported, the PDPE. PS bit selects the 1-Gbyte page size.

5.3.1 Canonical Address Form

The AM D64 architecture requires implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form. An addressisin canonica formiif the
address bits from the most-significant implemented bit up to bit 63 are all onesor all zeros. If the
addresses of all bytesin avirtual-memory reference are not in canonical form, the processor generates
ageneral-protection exception (#GP) or a stack fault (#SS) as appropriate.

5.3.2 CR3

Inlong mode, the CR3 register is used to point to the PM L4 base address. CR3 is expanded to 64 bits
inlong mode, allowing the PM L4 table to be located anywhere in the 52-bit physical-address space.
Figure on page 135 showsthe long-mode CR3 format.

134 [AM D PUb“C Use] Page Translation and Protection

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
63 52 51 32
Page-Map Level-4 Table Base Address
REEEEs, Ll (Thisisan architectural limit. A given implementation may support fewer bits.)
31 12 11 5 4 3 2 0

Usage depends on state of Processor Context 1D

Page-Map Level-4 Teble Base Address enablement (CR4.PCIDE). See below.

11 5 4 3 2 0

CR4.PCIDE=0 Reserved § 'é Reserved

Processor Context Identifier (See “ Process Context

CRA.PCIDE=L Identifier” on page 147 for more information.)

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits51:12. This40-bit field pointsto the PML4 base address. ThePML4
tableisaligned on a4-Kbyte boundary with the low-order 12 address bits (11:0) assumed to be 0. This
yields atotal base-address size of 52 bits. System software running on processor implementations
supporting less than the full 52-bit physical-address space must clear the unimplemented upper base-
address bitsto O.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-trandlation table has awriteback or writethrough caching policy. When PWT=0, the table
has awriteback caching policy. When PWT=1, the table has awritethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disableindicates whether the highest-
level page-trangdlation tableis cacheable. When PCD=0, thetableis cacheable. When PCD=1, thetable
isnot cacheable.

Process Context Identifier. Bits11:0. This 12-bit field determines the current Processor Context
Identifier (PCID) when CR4.PCIDE=1.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.3.3 4-Kbyte Page Translation

In long mode, 4-Kbyte physical-page translation is performed by dividing the virtual addressinto six
fields. Four of thefields are used asindicesinto the level page-tranglation hierarchy. The virtual-
addressfields are described asfollows, and are shown in Figure 5-17 on page 136:

» Bits63:48 areasign extension of bit 47, asrequired for canonical-address forms.

Page Translation and Protection [AM D PUb“C Use] 135

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

* Bits47:39 index into the 512-entry page-map level-4 table.

* Bits38:30 index into the 512-entry page-directory pointer table.
* Bits29:21 index into the 512-entry page-directory table.

e Bits20:12 index into the 512-entry page table.

* Bits11:0 provide the byte offset into the physical page.

Note: The sizes of the sign extension and the PML4 fields depend on the number of virtual address
bits supported by the implementation.

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
Page-Ma . . .
) L g|]4offp ¢ Page-Directory-| Page-Directory| Page-Table Physical-
Sign Extend evel-2 ONSel| pointer Offset Offset Offset Page Offset
(PML4)
X9 49 x9 X9 A12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
52*

—> PTE A

52
5o« ™| PDPE |
= e | . - el
> PDE 1
> > > —— >
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Level-4
Base Address CR3

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 137 and Figure 5-21 on page 138 show the long-mode 4-Kbyte
trand ation-table formats:

» Figure 5-18 on page 137 shows the PML4E (page-map level -4 entry) format.

» Figure 5-19 on page 137 shows the PDPE (page-directory-pointer entry) format.
» Figure 5-20 on page 137 shows the PDE (page-directory entry) format.

» Figure 5-21 on page 138 showsthe PTE (page-table entry) format.

The fields within these table entries are described in “ Page-Trand ation-Table Entry Fields’ on
page 143.

136 [AM D PUbllC Use] Page Translation and Protection

AMDA

24593—Rev. 3.36—O0October 2020

AMDG64 Technology

Figure 5-20 on page 137 showsthe PDE.PShit (bit 7) cleared to O, indicating a4-K byte physical-page

tranglation.
63 62 52 51 32
N Available Page-Directory-Pointer Base Address
X (Thisisan architectural limit. A given implementation may support fewer bits.)
31 2 11 9 8 7 6 5 4 3 2 1 0
MM | PIPIU|R
Page-Directory-Pointer Base Address AVL B|B|G|A|C|W|/]|/|P
Z|Z|N DIT|S|W
Figure 5-18. 4-Kbyte PML4E—Long Mode
63 62 52 51 32
N Available Page-Directory Base Address
X (Thisisan architectural limit. A given implementation may support fewer bits.)
31 2 1 9 8 7 6 5 4 3 2 1 0
| | PIPIU|R
Page-Directory Base Address AVL GIO|G|A|C|W|/]|I]|P
N N DIT|S|W
Figure 5-19. 4-Kbyte PDPE—Long Mode
63 62 52 51 32
N Available Page-Table Base Address
X (Thisisan architectural limit. A given implementation may support fewer bits.)
31 1 11 9 8 7 6 5 4 3 2 1 0
| | PIPIU|R
Page-Table Base Address AVL G|IO|G|A|C|W|/|I]|P
N N DIT|S|W

Figure 5-20.

4-Kbyte PDE—Long Mode

Page Translation and Protection [AM

D Public Use] adl

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 59 58 52 51 32
N | Usage depends . Physical-Page Base Address
X on CR4.PKE Available (Thisisan architectural limit. A given implementation may support fewer bits.)
(see below) -Ag p ay supp!
31 12 11 9 8 7 6 5 4 3 2 1 0
PA PI{P|U|R
Physical-Page Base Address AVL G DIA|[C|W|/|/]]|P
T D|T|s|w
62 59
CR4.PKE=0 Available

Memory Protection Key (See“Memory Pro
CR4.PKE=1 | tection Keys (MPK) Bit” on page 153 for
more information)

Figure 5-21. 4-Kbyte PTE—Long Mode

5.3.4 2-Mbyte Page Translation

Inl
fiel

ong mode, 2-Mbyte physical-page trandlation is performed by dividing the virtual addressinto five
ds. Three of the fields are used asindicesinto the level page-trandation hierarchy. The virtual -

addressfields are described as follows, and are shown in Figure 5-22:

Bits 63:48 are asign extension of bit 47 asrequired for canonical address forms.
Bits 47:39 index into the 512-entry page-map level-4 table.

Bits 38:30 index into the 512-entry page-directory-pointer table.

Bits 29:21 index into the 512-entry page-directory table.

Bits 20:0 provide the byte offset into the physical page.

138

[AM D PUbllC Use] Page Translation and Protection

AMDA
AMDG64 Technology

24593—Rev. 3.36—O0October 2020

Virtual Address

63 48 47 3938 30 29 2120 0
Page-Ma . .
. Level fT bl gff Page-Directory-| Page-Directory P Offset
Sign Extend evel-4 Table Offsef pointer Offset Offset age iise
(PML4)
A9 A9 A9 st
Page-
Page-Map Directory- Page- 2 Mbyte
Level-4 Pointer Directory Physical
Table Table Table Page
52
5o« ™| PDPE |7
—> pML4E 4 5o - ZZ}(;SlcaII
ress
—> PDE [
> > P — — —
*This is an architectural limit. A given process
51 12 implementation may support fewer bits.
Page-Map Level-4
‘ Base Address CR3
_

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 140 show the long-mode 2-Mbyte trandl ation-table formats (the
PML4 and PDPT formats areidentical to those used for 4-Kbyte page trans ations and are repeated
herefor clarity):

» Figure 5-23 on page 140 showsthe PML4E (page-map level-4 entry) format.
» Figure 5-24 on page 140 shows the PDPE (page-directory-pointer entry) format.
» Figure 5-25 on page 140 shows the PDE (page-directory entry) format.

The fields within these table entries are described in “ Page-Trand ation-Table Entry Fields” on
page 143. PTEs are not used in 2-Mbyte page trandations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a 2-Mbyte physical-page trandlation.

Page Translation and Protection 139

[AMD Public Use]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 52 51 32
N Available Page-Directory-Pointer Base Address
X (Thisisan architectural limit. A given implementation may support fewer bits.)
31 2 11 9 8 7 6 5 4 3 2 1 0
MiM| | PIP|U|R
Page-Directory-Pointer Base Address AVL B/ B|[G|A|C|{W|/|/]|P
71z [N D|T|S|W

Figure 5-23. 2-Mbyte PML4E—Long Mode

63 62 52 51 32
N Available Page-Directory Base Address
X (Thisisan architectural limit. A given implementation may support fewer hits.)
31 2 11 9 8 7 6 5 4 3 2 1 0
| | P{P|U|R
Page-Directory Base Address AVL G|O|G|A|C|W|/]|/]|P
N N DIT|S|W

Figure 5-24. 2-Mbyte PDPE—Long Mode

63 52 51 32
N | USage depends . Physical-Page Base Address
X on CR4.PKE Avallable (Thisisan architectural limit. A given implementation may support fewer bits.)
(see below) -Ag p 3y SUpp
31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0
P PIPIUIR
Physical-Page Base Address Reserved, MBZ A AVL G|1|D|A|C|W|/|/]|P
T DIT|S|W
62 59
CR4.PKE=0 Available

Memory Protection Key (See “Memory Pro
CR4.PKE=1 | tection Keys (MPK) Bit" on page 153 for
more information.

Figure 5-25. 2-Mbyte PDE—Long Mode

5.3.5 1-Gbyte Page Translation

Inlong mode, 1-Gbyte physical-page translation is performed by dividing the virtual addressinto four
fields. Two of thefields are used asindicesinto the level page-trandation hierarchy. The virtual-
addressfields are described asfollows, and are shown in Figure 5-26 on page 141:

» Bits63:48 areasign extension of bit 47 asrequired for canonical addressformes.
* Bits47:39 index into the 512-entry page-map level-4 table.

140 [AM D PUb“C Use] Page Translation and Protection

AMDA

24593—Rev. 3.36—O0October 2020

* Bits38:30 index into the 512-entry page-directory-pointer table.
* Bits29:0 provide the byte offset into the physical page.

Virtual Address

AMDG64 Technology

63 48 47 3938 30 29 0
Page-Map .
Page-Directory-
Sign Extend |Level-4 Table Offsét Pginter Offse{ Page Offset
(PML4)
79 A9 A~ 30
Page-
Page-Map Directory- 1 Ghyte
Level-4 Pointer Physical
Table Table Page
52*
gox PDPE |7
L] s Physicalf
PMLAE 1= ™ Address
> P —
*This is an architectural limit. A given process
51 12 implementation may support fewer bits.

—

Figure 5-26.

Page-Map Level-4 Base Address

CR3

1-Gbyte Page Translation—Long Mode

Figure 5-27 and Figure 5-28 on page 142 show the long mode 1-Gbyte tranglation-table formats (the
PML4 format isidentical to the one used for 4-Kbyte page translations and is repeated herefor clarity):

» Figure 5-27 shows the PML4E (page-map level-4 entry) format.
» Figure 5-28 shows the PDPE (page-directory-pointer entry) format.

Thefields within these table entries are described in “ Page-Trand ation-Table Entry Fields” on
page 143 in the current volume. PTEs and PDEs are not used in 1-Gbyte page tranglations.

Figure 5-28 on page 142 showsthe PDPE.PS hit (bit 7) set to 1, indicating a 1-Gbyte physical-page

trandlation.

Page Translation and Protection

[AMD Public Use]

141

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 52 51 32
N Available Page Directory Pointer Base Address
X (Thisisan architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 54 3 2 10
M|M]| I PIPIUIR
Page-Directory-Pointer Base Address AVL B[B|G|A|C|W|/]|/]|P
Z|Z|N D|T|S|W

Figure 5-27. 1-Gbyte PML4E—Long Mode

63 62 59 58 52 51 32
N | Usage depends Available i
on CRA.PKE Physical Page Base Address
X (see bél ow) (Thisisan architectural limit. A given implementation may support fewer bits.)
31 30 12 11 9 87 6 54 3 2 10
FF:hye) PIPIU|R
B?;e Reserved, MBZ A AVL Gli1|p|Aalclw|/|/]|P
Addr T D|T|S|W
62 59
CR4.PKE=0 Available

Memory Protection Key (See“Memory Pro
CR4PKE=1 | tection Keys(MPK) Bit” on page 153 for
more information.

Figure 5-28. 1-Gbyte PDPE—Long Mode

1-Gbyte Paging Feature Identification. EDX bit 26 asreturned by CPUID function 8000_0001h
indicates 1-Ghyte page support. The EAX register asreturned by CPUID function 8000_0019h reports
the number of 1-Gbyte L1 TLB entries supported and EBX reports the number of 1-Gbyte L2 TLB
entries. For more information using the CPUID instruction see Section 3.3 * Processor Feature
Identification” on page 66.

142 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

5.4 Page-Translation-Table Entry Fields

The page-trand ation-table entries contain control and informational fields used in the management of
the virtual-memory environment. Most fields are common across all trandlation table entries and
modes and occupy the same bit locations. However, somefields are located in different bit positions
depending on the page trandation hierarchical level, and other fields have different sizes depending on
which physical-page size, physical-address size, and operating mode are selected. Although these
fields can differ in bit position or size, their meaning is consistent across all levels of the page
trandation hierarchy and in al operating modes.

5.4.1 Field Definitions
The following sections describe each field within the page-trand ation table entries.

Translation-Table Base Address Field. The trandation-table base-addressfield pointsto the
physical base address of the next-lower-level table in the page-trandlation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so only the address bits above bit 11 are
stored in the trangl ation-table base-addressfield. Bits 11:0 are assumed to be 0. The size of thefield
depends on the mode:

e Innormal (non-PAE) paging (CR4.PAE=0), thisfield specifies a 32-bit physical address.

* InPAE paging (CR4.PAE=1), thisfield specifies a 52-bit physical address.

52 bits correspond to the maximum physical-address size allowed by the AMD64 architecture. If a
processor implementation supports fewer than the full 52-bit physical address, software must clear the
unimplemented high-order trangl ation-table base-address bits to 0. For example, if a processor

implementation supports a40-bit physical-address size, software must clear bits 51:40 when writing a
trand ation-table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-addressfield pointsto the base

address of the trandated physical page. Thisfield isfound only in the lowest level of the page-

trandation hierarchy. The size of the field depends on the mode:

* Innormal (non-PAE) paging (CR4.PAE=0), thisfield specifies a 32-bit base address for a physical
page.

* InPAE paging (CR4.PAE=1), thisfield specifies a52-bit base address for aphysical page.

Physical pages can be 4 Kbytes, 2 Mbytes, 4 Mbytes, or 1-Gbyte and they are aways aligned on an
address boundary corresponding to the physical-page length. For example, a2-Mbyte physical pageis
always aligned on a 2-Mbyte address boundary. Because of this alignment, the low-order address bits
are assumed to be 0, asfollows:

» 4-Kbyte pages, bits 11:0 are assumed 0.
e 2-Mbyte pages, bits 20:0 are assumed O.
* 4-Mbyte pages, bits 21:0 are assumed 0.
» 1-Gbyte pages, bits 29:0 are assumed 0.

Page Translation and Protection [AM D PUb“C Use] 143

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Present (P) Bit. BitO0. Thishit indicates whether the page-translation table or physical pageisloaded
in physical memory. When the Pbit is cleared to O, the table or physical pageisnot loaded in physical
memory. When the P bit is set to 1, the table or physical page isloaded in physical memory.

Software clearsthisbit to 0 to indicate a page table or physical pageisnot loaded in physical memory.
A page-fault exception (#PF) occursif an attempt is made to access atable or page when the Phit isO.
System software isresponsible for |oading the missing table or page into memory and setting the P bit
tol.

When the Pbit is0, indicating anot-present page, all remaining bitsin the page data-structure entry are
available to software.

Entrieswith Pcleared to O are never cached in TLB nor will the processor set the Accessed or Dirty bit
for the table entry.

Read/Write (R/W) Bit. Bit 1. Thishit controlsread/write accessto all physical pages mapped by the
table entry. For example, apage-map level-4 R/W bit controls read/write accessto all 128M

(512 x 512 x 512) physical pagesit mapsthrough the lower-level trand ation tables. When the R/W bit
iscleared to O, accessisrestricted to read-only. When the R/W bit isset to 1, both read and write access
isallowed. See*“Page-Protection Checks’ on page 151 for a description of the paging read/write
protection mechanism.

User/Supervisor (U/S) Bit. Bit 2. Thisbit controlsuser (CPL 3) accessto all physical pages mapped
by the table entry. For example, a page-map level-4 U/S bit controls the access allowed to all 128M
(512 x 512 x 512) physical pagesit mapsthrough the lower-level trand ation tables. When the U/S bit
iscleared to O, accessisrestricted to supervisor level (CPL 0, 1, 2). When the U/Shit isset to 1, both
user and supervisor accessis allowed. See “ Page-Protection Checks’ on page 151 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. Thisbit indicates whether the page-trandlation table or
physical page to which this entry points has awriteback or writethrough caching policy. When the
PWT bitiscleared to 0, thetable or physical page hasawriteback caching policy. When the PWT bitis
set to 1, the table or physical page has awritethrough caching policy. See“Memory Caches’ on

page 191 for additional information on caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. Thishit indicates whether the page-translation table or
physical page to which thisentry pointsis cacheable. When the PCD bit is cleared to 0, the table or
physical pageis cacheable. When the PCD bit is set to 1, the table or physical page is hot cacheable.
See “Memory Caches’ on page 191 for additional information on caching.

Accessed (A) Bit. Bit5. Thishit indicates whether the page-transation table or physical pageto
which this entry points has been accessed. The A bit isset to 1 by the processor the first time the table
or physical pageiseither read from or written to. The A bit isnever cleared by the processor. Instead,
software must clear thisbit to 0 when it needsto track the frequency of table or physical-page accesses.

Dirty (D) Bit. Bit 6. Thishitisonly present in the lowest level of the page-tranglation hierarchy. It
indicates whether the physical page to which thisentry points has been written. The D bitisset to 1 by

144 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

the processor thefirst time there isawrite to the physical page. The D bit is never cleared by the
processor. Instead, software must clear thisbit to O when it needs to track the frequency of physical-
page writes.

Page Size (PS) Bit. Bit7. Thisbitispresent in page-directory entries and long-mode page-directory-
pointer entries. When the PS bit is set in the page-directory-pointer entry (PDPE) or page-directory
entry (PDE), that entry isthelowest level of the page-trandation hierarchy. When the PShit is cleared
toOinall levelsabove PTE, the lowest level of the page-trandation hierarchy is the page-table entry
(PTE), and the physical-page size is 4 Kbytes. The physical-page sizeis determined as follows:

» If EFER.LMA=1 and PDPE.PS=1, the physical-page sizeis 1 Ghyte.
* If CR4.PAE=0 and PDE.PS=1, the physical-page size is4 Mbytes.
* If CR4.PAE=1 and PDE.PS=1, the physical-page sizeis 2 Mbytes.

See Table 5-1 on page 124 for adescription of the relationship between the PS bit, PAE, physical-page
sizes, and page-trandlation hierarchy.

Global Page (G) Bit. Bit8. Thishitisonly present in the lowest level of the page-trandation
hierarchy. It indicates the physical pageisaglobal page. The TLB entry for aglobal page (G=1) isnot
invalidated when CR3 isloaded either explicitly by aM OV CRninstruction or implicitly during atask
switch. Use of the G bit requires the page-global enable bit in CR4 to be set to 1 (CR4.PGE=1). See
“Global Pages’ on page 148 for more information on the global-page mechanism.

Available to Software (AVL) Bit. Thesebitsarenot interpreted by the processor and are availablefor
use by system software.

Page-Attribute Table (PAT) Bit. Thisbitisonly present inthe lowest level of the page-trandation
hierarchy, asfollows:

* If thelowest level isaPTE (PDE.PS=0), PAT occupiesbit 7.
* If thelowest level isaPDE (PDE.PS=1) or PDPE (PDPE.PS=1), PAT occupies bit 12.

The PAT bit isthe high-order bit of a3-bit index into the PAT register (Figure 7-10 on page 210). The
other two bitsinvolved in forming theindex are the PCD and PWT bits. Not all processors support the
PAT bit by implementing the PAT registers. See “ Page-Attribute Table Mechanism” on page 210 for a
description of the PAT mechanism and how it is used.

Memory Protection Key (MPK) Bits. Bits62:59. When Memory Protection Keys are enabled
(CR4.PKE=1), this4-hit field sel ects the memory protection key for the physical page mapped by this
entry. Ignored if memory protection keys are disabled (CR4.PKE=0). (See “Memory Protection Keys
(MPK) Bit” on page 153 for a description of this mechanism.)

No Execute (NX) Bit. Bit 63. Thishit is present in the transl ation-table entries defined for PAE
paging, with the exception that the legacy-mode PDPE does not contain this bit. Thisbit is not
supported by non-PAE paging.

Page Translation and Protection [AM D PUb“C Use] 145

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

The NX bit can only be set when the no-execute page-protection feature is enabled by setting
EFER.NXE to 1 (see“Extended Feature Enable Register (EFER)” on page 56). If EFER.NXE=0, the
NX bit istreated asreserved. In this case, a page-fault exception (#PF) occursif the NX bit isnot
cleared to O.

Thisbit controls the ability to execute code from all physical pages mapped by the table entry. For
example, apage-map level-4 NX bit controls the ability to execute code from all 128M

(512 x 512 x 512) physical pagesit maps through the lower-level trand ation tables. When the NX bit
is cleared to O, code can be executed from the mapped physical pages. When the NX bitissetto 1,
code cannot be executed from the mapped physical pages. See“No Execute (NX) Bit” on page 145 for
adescription of the no-execute page-protection mechanism.

Reserved Bits. Software should clear all reserved bitsto O. If the processor isin long mode, or if
page-size and physical-address extensions are enabled in legacy mode, a page-fault exception (#PF)
occursif reserved bitsare not cleared to O.

5.4.2 Notes on Accessed and Dirty Bits

The processor never setsthe Accessed bit or the Dirty bit for anot present page (P = 0). The ordering
of Accessed and Dirty bit updates with respect to surrounding loads and storesis discussed bel ow.

Accessed (A) Bit. TheAccessed bit can be set for instructions that are speculatively executed by the
Processor.

For example, the Accessed bit may be set by instructions in a mispredicted branch path even though
those instructions are never retired. Thus, software must not assume that the TLB entry has not been
cached inthe TLB, just because no instruction that accessed the page was successfully retired.
Nevertheless, atable entry is never cached in the TLB without its Accessed bit being set at the same
time.

The processor does not order Accessed bit updates with respect to loads done by other instructions.

Dirty (D) Bit. The Dirty bit isnot updated speculatively. For instructions with multiple writes, the D
bit may be set for any writes completed up to the point of afault. In rare cases, the Dirty bit may be set
even if awrite was not actually performed, including MASKMOV Q with amask of zero and certain
x87 floating point instructions that cause an exception. Thus software can not assume that the page has
actually been written even where PTE[D] isset to 1.

If PTE[D] iscleared to 0, software can rely on the fact that the page has not been written.

In general, Dirty bit updates are ordered with respect to other loads and stores, although not
necessarily with respect to accesses to WC memory; in particular, they may not cause WC buffersto
be flushed. However, to ensure compatibility with future processors, a serializing operation should be
inserted before reading the D bit.

146 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

5.5 Translation-Lookaside Buffer (TLB)

When paging is enabled, every memory access hasits virtual address automatically trandated into a
physical address using the page-trandlation hierarchy. Trandation-lookaside buffers (TLBS), also
known as page-translation caches, nearly eliminate the performance penalty associated with page
trandation. TLBs are special on-chip cachesthat hold the most-recently used virtual-to-physical
address tranglations. Each memory reference (instruction and data) is checked by the TLB. If the
trandation ispresent inthe TLB, it isimmediately provided to the processor, thus avoiding external
memory references for accessing page tables.

TLBstake advantage of the principle of locality. That is, if amemory addressisreferenced, itislikely
that nearby memory addresses will be referenced in the near future. In the context of paging, the
proximity of memory addresses required for locality can be broad—it isequal to the page size. Thus, it
ispossiblefor alarge number of addressesto betranslated by asmall number of pagetranglations. This
high degree of locality means that almost all trand ations are performed using the on-chip TLBs.

System softwareis responsible for managing the TL Bs when updates are made to the linear-to-
physical mapping of addresses. A change to any paging data-structure entry is not automatically
reflected in the TLB, and hardware snooping of TLBs during memory-reference cyclesis not
performed. Software must invalidate the TLB entry of amodified trandation-table entry so that the
changeisreflected in subsequent address trandlations. TLB invalidationisdescribed in“TLB
Management” on page 148. Only privileged software running at CPL=0 can manage the TLBs.

5.5.1 Process Context Identifier

The Process Context Identifier (PCID) feature allows alogical processor to cache TLB mappings
concurrently for multiple virtual address spaces. When enabled (by setting CR4.PCIDE=1), the
processor associatesthe current 12-bit PCID with each TLB mapping it creates. Only entries matching
the current PCID are used when performing address translations. In this way, the processor may retain
cached TL B mappings for multiple contexts.

The current PCID isthe value in CR3[11:0]. When PCIDs are enabled the system software can store
12-bit Process Context Identifiersin CR3 for different address spaces. Subsequently, when system
software switches address spaces (by writing the page table base pointer in CR3[62:12]), the processor
may use TL B mappings previously stored for that address space and PCID. A MOV to CR4 that clears
CRA4.PCIDE causes al cached entriesin the TLB for the logical processor to be invalidated. When
PCIDs are not enabled (CR4.PCIDE=0) the current PCID isalways zero and all TLB mappings are
associated with PCID=0.

Attempting to set CR4.PCIDE withaMOQV to CR4 if EFER.LMA =0 or CR3[11:0] <>0causesina
#GP exception. Attempting to clear CR0.PG withaMOV to CRO if CR4.PCIDE is set causes a#GP
exception. The presence of PCID functionality isindicated by CPUID Function 1, ECX[PCID]=1.

Page Translation and Protection [AM D PUbllC Use] 147

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

5.5.2 Global Pages

The processor invalidates the TLB whenever CR3 isloaded either explicitly or implicitly. After the
TLB isinvalidated, subsequent address references can consume many clock cyclesuntil their

trand ations are cached as new entriesin the TLB. Invalidation of TLB entriesfor frequently-used or
critical pages can be avoided by specifying the trandations for those pages as global. TLB entriesfor
global pages are not invalidated as aresult of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing the PGE bit in CR4 (bit 7). When
CR4.PGE is set to 1, global-page extensions are enabled. When CR4.PGE is cleared to O, global-page
extensions are disabled. When CR4.PGE=1, setting the global (G) bit in the trand ation-table entry
marks the page as global.

The INVLPG instruction ignoresthe G bit and can be used to invalidate individual global-page entries
inthe TLB. To invalidate all entries, including global-page entries, disable global-page extensions
(CR4.PGE=0).

5.5.3 TLB Management

Generally, unless system software modifies the linear-to-physical address mapping, the processor
manages the TLB transparently to software. Thisincludes allocating entries and replacing old entries
with new entries. In general, software changes made to paging-data structures are not automatically
reflected in the TLB. In these situations, it is necessary for softwareto invalidate TLB entries so that
these changes will be propagated to the page-transl ation mechanism.

TLB entries can be explicitly invalidated using operationsintended for that purpose or implicitly
invalidated as aresult of another operation. TLB invalidation has no effect on the associated page-
trandation tablesin memory.

Explicit Invalidations. Three mechanismsare provided to explicitly invalidate the TLB:

« The Invalidate TLB Entry instruction (INVLPG) can be used to invalidate a specific entry within
the TLB. Thisinstruction invalidates an entry regardless of whether it is marked as global or not.

e The Invalidate TLB entry in a Specified ASD instruction (INVLPGA) operates similarly, but
operates only on entries associated with the specified ASID. See “Invalidate Page, Alternate
ASID” on page 498.

* TheInvalidate TLB with Broadcast instruction (INVLPGB) can be used to invalidate a specified
range of TLB entries on the local processor and broadcast the invalidation operation to remote
processors. See INVLPGB in Volume 3.

e The Invalidate TLB entries in Specified PCID instruction (INVPCID) can be used to invalidate
TLB entries of the specified Processor Context ID. See INVPCID in Volume 3.

» Updates to the CR3 register cause the entire TLB to be invalidated except for global pages. The
CR3 register can be updated with the MOV CR3 instruction. CR3 is also updated during a task
switch, with the updated CR3 value read from the TSS of the new task.

148 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

e TheTLB_CONTROL field of aVMCB can request specific flushes of the TLB to occur when the
VMRUN instruction is executed on that VMCB. See “TLB Flush” on page 497.

Implicit Invalidations. The following operations cause the entire TLB to be invalidated, including
global pages:

* Modifying the CRO.PG bit (paging enable).

* Modifying the CR4.PAE hit (physical-address extensions), the CR4.PSE bit (page-size
extensions), or the CR4.PGE bit (page-global enable).

* Entering SMM asaresult of an SMI interrupt.

» Executing the RSM instruction to return from SMM.

e Updating amemory-type range register (MTRR) with the WRM SR instruction.
» Externa initialization of the processor.

* Externa masking of the A20 address bit (asserting the A20M# input signal).

» Writesto certain model-specific registers with the WRM SR instruction; see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product for more information.

* A MOV to CRA4 that changes CR4.PKE from O to 1.
* A MOV to CRA4 that clears CR4.PCIDE from 1 to 0.

Invalidation of Table Entry Upgrades. If atableentry isupdated to remove a page access
constraint, such as removing supervisor, read-only, and/or no-execute restrictions, aninvalidation is
not required because the hardware will automatically detect the changes. If atable entry isupdated and
does not remove a permission violation, it is unpredictable whether the old or updated entry will be
used until an invalidation is performed.

Speculative Caching of Address Translations. For performance reasons, AMD64 processors may
speculatively load valid address trand ations into the TL B on fal se execution paths. Such tranglations
are not based on references that a program makes from an “architectural state” perspective, but which
the processor may make in speculatively following an instruction path which turns out to be
mispredicted. In general, the processor may create aTLB entry for any linear address for which valid
entries exist in the page table structure currently pointed to by CR3. Thismay occur for both
instruction fetches and data references. Such entriesremain cached inthe TLBsand may be used in
subsequent tranglations. Loading a trandlation speculatively will set the Accessed bit, if not already
set. A trandation will not be loaded speculatively if the Dirty bit needs to be set.

Caching of Upper Level Translation Table Entries. Similarly, toimprovethe performance of table
walks on TLB misses, AMDG64 processors may save upper level trandation table entriesin special

table walk caching structures which are kept coherent with the tablesin memory viathe same
mechanisms as the TLBs—by means of the INVLPG instruction, moves to CR3, and modification of
paging control bitsin CRO and CR4. Like addresstrandationsin the TLB, these upper level entries
may al so be cached speculatively and by fal se-path execution. These entries are never cached if their P
(present) bitsare set to O.

Page Translation and Protection [AM D PUb“C Use] 149

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Under certain circumstances, an upper-level table entry that cannot ultimately lead to avalid

trand ation (because there are no valid entriesin the lower level table to which it points) may also be
cached. This can happen while executing down afalse path, when an in-progress table walk gets
cancelled by the branch mispredict before the low level table entry that would cause afault is
encountered. Said another way, the fact that a page table has no valid entries does not guarantee that
upper level table entries won't be accessed and cached in the processor, aslong as those upper level
entries are marked as present. For thisreason, it is not safe to modify an upper level entry, evenif no
valid lower-level entries exist, without first clearing its present bit, followed by an INVLPG
instruction.

Use of Cached Entries When Reporting a Page Fault Exception. On current AMD64
processors, when any type of page fault exception is encountered by the MMU, any cached upper-
level entriesthat |ead to the faulting entry are flushed (along with the TL B entry, if already cached) and
the table walk is repeated to confirm the page fault using the table entriesin memory. Thisis done
because atable entry is allowed to be upgraded (by marking it as present, or by removing itswrite,
execute or supervisor restrictions) without explicitly maintaining TLB coherency. Such an upgrade
will be found when the table isre-walked, which resolvesthe fault. If the fault is confirmed on there-
walk however, apage fault exception isreported, and upper level entriesthat may have been cached on
there-walk are flushed.

Handling of D-Bit Updates. When the processor needsto set the D bit inthe PTE for aTLB entry
that isalready marked aswritable at al cached TLB levels, the table walk that is performed to access
the PTE in memory may use cached upper level table entries. This differs from the fault situation
previously described, in which cached entries aren’t used to confirm the fault during the table walk.

Invalidation of Cached Upper-level Entries by INVLPG. The effect of INVLPG on TLB caching
of upper-level pagetable entriesis controlled by EFER[TCE] on processors that support the
tranglation cache extension feature. If EFER[TCE] isO, or if the processor does not support the

trangl ation cache extension feature, an INVLPG will flush all upper-level pagetableentriesinthe TLB
aswell asthetarget PTE. If EFER[TCE] is 1, INVLPG will flush only those upper-level entriesthat
lead to the target PTE, aong with the target PTE itself. INVLPGA may flush all upper-level entries
regardless of the state of TCE. For further details, see Section 3.1.7 * Extended Feature Enable
Register (EFER)” on page 56.

Handling of PDPT Entries in PAE Mode. When 32-bit PAE modeisenabled on AMDG64 processors
(CR4.PAE isset to 1) athird level of the address trandlation table hierarchy, the page directory pointer
table (PDPT), isenabled. Thistable contains four entries. On current AMD64 processors, in native
mode, these four entries are unconditionally loaded into the table walk cache whenever CR3 iswritten
with the PDPT base address, and remain locked in. At this point they are also checked for reserved bit
violations, and if such violations are present a general-protection exception (#GP) occurs.

Under SVM, however, when the processor isin guest mode with PAE enabled, the guest PDPT entries
are not cached or validated at this point, but instead are loaded and checked on demand in the normal
course of address trandlation, just like page directory and page table entries. Any reserved bit
violations are detected at the point of use, and result in a page-fault (#PF) exception rather than a

150 [AM D PUbllC Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

general-protection (#GP) exception. The cached PDPT entries are subject to displacement from the
table walk cache and rel oading from the PDPT, hence software must assume that the PDPT entries
may be read by the processor at any point while those tables are active. Future AMD processors may
implement this same behavior in native mode aswell, rather than pre-loading the PDPT entries.

5.6 Page-Protection Checks

The AM D64 architecture provides the following forms of page-level memory protection:

» Supervisor pages. This form of protection prevents non-privileged (user) code from accessing
privileged (supervisor) code and data.

» Read-only pages. Thisform of protection prevents writesinto read-only address spaces.

» Instruction fetch restrictions. Two forms of page-level memory protection prevent the processor
from fetching instructions from pages that are either known to contain non-executable data or that
are accessible by user-mode code.

* Memory protection keys. Thisform of protection allows an application to manage page-based data
access protections from user mode.

» Shadow stack pages. The processor restricts the types of memory accessesthat are allowed to read
or write a shadow stack page and prohibits the shadow stack mechanism from accessing non-
shadow stack pages. See “ Shadow Stack Protection” on page 154.

Access protection checks are performed when avirtual addressistrandated into a physical address.
For those checks, the processor examines the page-level memory-protection bitsin the translation
tablesto determineif the accessis allowed. The page table bitsinvolved in these checks are:

» User/Supervisor (U/S)—See “User/Supervisor (U/S) Bit” on page 144.

* Read/Write (R/W)—See “ Read/Write (R/W) Bit” on page 144.

* No-Execute (NX)—See “No Execute (NX) Bit” on page 145.

» Memory Protection Key (MPK)—See “Memory Protection Keys (MPK) Bit” on page 153.

Access protection actions taken by the processor are controlled by the following bits:
* Write-Protect enable (CRO.WP)—See “Write Protect (WP) Bit” on page 44.
* No-Execute Enable (EFER.NXE)—See “ No-Execute Enable (NXE) Bit” on page 58.

» Supervisor-mode Execution Prevention enable (CR4.SMEP)—See “ Supervisor Mode Execution
Prevention (SMEP)” on page 51.

» Protection Key Enable (CR4.PKE)—See “ Protected-Mode Enable (PE) Bit” on page 43.
» Control-flow Enforcement Technology (CR4.CET) - See“ CR4 Register” on page 47.

These protection checks are available at all levels of the page-trangdlation hierarchy.

Page Translation and Protection [AM D PUb“C Use] 151

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

5.6.1 User/Supervisor (U/S) Bit

The U/S bit in the page-trand ation tables determines the privilege level required to access the page. If
U/S=0, the pageis considered a supervisor page and if U/S=1, the pageis considered a user page.
Conceptually, user (non-privileged) pages correspond to a current privilege-level (CPL) of 3, or least-
privileged. Supervisor (privileged) pages correspond to aCPL of 0, 1, or 2, all of which arejointly
regarded as most-privileged.

When the processor isrunning at a CPL of 0, 1, or 2, it can access both user and supervisor pages.
However, when the processor isrunning at a CPL of 3, it can only access user pages. If an attempt is
made to access a supervisor page while the processor isrunning at CPL = 3, apage-fault exception
(#PF) occurs.

See “Privilege-Level Concept” on page 100 for more information on processor privilege levels.

5.6.2 Read/Write (R/W) Bit

The R/W bit in the page-trandlation tabl es specifies the accesstype allowed for the page. If R/W=1, the
pageisread/write. If R/W =0, the pageisread-only. A page-fault exception (#PF) occursif an attempt
ismade by user software to write to aread-only page. If supervisor software attempts to write a read-
only page, the outcome depends on the value of the CRO.WP bit (described below).

5.6.3 No Execute (NX) Bit

TheNX bit providesthe ability to mark a page as non-executable. If the NX bit isset at any level of the
page-table hierarchy in the table entries traversed during atable walk, the page mapped by those
entriesis a no-execute page. When no-execute protection is enabled, any attempt to fetch an
instruction from a no-execute page results in a page-fault exception (#PF).

The no-execute protection check appliesto all privilege levels. It does not distinguish between
supervisor and user-level accesses.

The no-execute protection feature is supported only in PAE-paging mode. In 32-bit PAE mode, the NX
bit is not supported at the Page Directory Pointer table level. In this mode, the value of the NX bit at
the PDPlevel defaultsto O.

No-execute protection is enabled by setting the NXE bit in the EFER register to 1. Before setting this
bit, system software must verify the processor supports the no-execute feature by checking the CPUID
NX feature flag (CPUID Fn8000_0001 EDX[NX]).

5.6.4 Write Protect (CRO.WP) Bit

Theability to writeto read-only pagesis governed by the processor mode and whether write protection
isenabled. If write protection is not enabled, a processor running at CPL 0, 1, or 2 can writeto any
physical page, evenif itismarked asread-only. Enabling write protection by setting the WPbit in CRO
prevents supervisor code from writing into read-only pages, including read-only user-level pages.

152 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

A page-fault exception (#PF) occursif software attemptsto write (at any privilege level) into aread-
only page while write protection is enabled.

5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit

When supported and enabled, apage-fault exception (#PF) isasserted if the processor attemptsto fetch
an instruction from a user page while running at CPL 0, 1, or 2. A user page is any page with the U/S
bit set to 1, and thus accessible when the processor is running at CPL = 3.

Supervisor-mode execution prevention is enabled by setting the SMEP bit (bit 20) in the CR4 register
to 1. Before setting this bit, system software must verify the processor supports the SMEPfeature by
checking the SMEPfeature flag (CPUID FnO000_0007_EBX[SMEP]_x0=1).

For more information using the CPUID instruction see Section 3.3 “ Processor Feature | dentification”
on page 66.

5.6.6 Memory Protection Keys (MPK) Bit

The Memory Protection Key (MPK) feature provides away for applications to impose page-based
data access protections (read/write, read-only or no access), without requiring modification of page
tables and subsequent TL B invalidations when the application changes protection domains.

When MPK isenabled (CR4.PKE=1), aprotection key islocated in bits 62:59 of final pagetable entry
mapping each virtual address. This 4-bit protection key isused as anindex (i) into the user-accessible
PKRU register which contains 16 access-disable/write-disable (WDi/ADi) pairs.

31 30 29 28 27 26 25 24 23 22 21 2019 18 1716 1514131211 10 9 8 7 6 5 4 3 2 1 O

PK15| PK14|PK13| PK12 | PK11 |PK10| PK9 | PK8 | PK7 | PK6 | PK5 | PK4 | PK3 | PK2 | PK1 | PKO

WIAWAWAWAIWAWAWAWAWAWAWAWAWAWAWA|W|A
bbb|/bb|bjb|b/D|D|/D|D

Figure 5-29. PKRU Register

The WDIi/ADi pairs operate asfollows:

If ADi=0, dataaccessis permitted

» If ADi=1, no dataaccessis permitted (regardless of CPL)

* If WDi ==0, write accessisallowed

« If WDi == 1. User-mode write access is not allowed. Supervisor accessis controlled by CRO.WP:
* If CRO.WP=1, supervisor-mode writes are not allowed
* If CRO.WP=0, supervisor-mode writes are allowed

Page Translation and Protection [AM D PUb“C Use] 153

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Software can usethe RDPKRU and WRPK RU instructionsto read and writethe PKRU register. These
instructions are not privileged and can be used in user mode or in supervisor mode.

The MPK mechanism isignored in the following cases:

* if CRA.PKE=0

* if long modeisdisabled (EFER.LMA=0)

e forinstruction fetches

» for pages marked in the paging structures as supervisor addresses (U/S=0)

5.7 Shadow Stack Protection

When the shadow stack feature is enabled (CR4.CET=1), certain combinations of page-table
protection bits are used to distinguish pages containing shadow stacks from ordinary pages. As
described in the following sections, the processor restricts the types of memory accesses that can be
made to shadow stack pages and prohibits the shadow stack mechanism from accessing non-shadow
stack pages. (See “ Shadow Stacks’ on page 619 for details on the shadow stack feature).

5.7.1 Shadow Stack Accesses

The processor treats certain memory accesses as shadow stack accesses. Shadow stack accesses are
generated only by the shadow stack instructions or by the shadow stack mechanism. Aswith ordinary
data accesses, a shadow stack access can be either a supervisor access or a user access, depending on
the CPL when the accessis made. Shadow stack accesses made when the processor isat CPL 0, 1, or 2
are supervisor-shadow stack accesses, and accesses made at CPL 3 are user-shadow stack accesses.
(An exception isthe WRUSS instruction, whose accesses are a\ways treated as user-shadow stack
accesses).

5.7.2 Shadow Stack Pages
Shadow stack accesses are allowed only to linear addresses that are mapped to shadow stack pages. A
shadow stack is described by the following combination of page-table protection bits:

* R/W(Read/Write)=0 and D(Dirty)=1inthefinal page-table entry that maps the linear address.
* R/W(Read/Write)=1in all other page-mapping structures leading to the final page-table entry.
The U/S (User/Supervisor) bit in the page-trand ation tables determines the privilege level required to

access a given shadow stack page. If U/S=0, the page is considered a supervisor-shadow stack page
and if U/S=1 the page is considered a user-shadow stack page.

5.7.3 Shadow Stack Protection Checks

The processor restricts the types of memory accesses that are allowed to read or write a shadow stack
page. The page-level protection bits and the type of memory access are examined to determineif the
accessisallowed. Thefollowing section assumes the memory protection key field allows accessto the

154 [AM D PUb“C Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

given page, if memory protection keys are enabled, and that CRO.WP=1 (which is prerequisite for
enabling the shadow stack feature).

The following memory accesses are allowed to shadow stack pages:

» User-shadow stack accesses can read or write user-shadow stack pages,
» Supervisor-shadow stack accesses can read or write supervisor-shadow stack pages.

(Note: shadow stack write accesses are allowed to complete, even though the R/W bit is0).
* Non-shadow stack reads can read any shadow stack page (subject to U/S page protections).

Thefollowing memory accesses are not allowed:

e User-shadow stack access to supervisor-shadow stack pages.
» Supervisor-shadow stack access to user-shadow stack pages.
* Any shadow stack accessto anon-shadow stack page.

* Non-shadow stack writesto a shadow stack page.

If the memory accessis not allowed, a page-fault exception (#PF) is generated with the paging-
protection violation bits (user/supervisor, read/write, or both) set in the error code as appropriate. The
SShitisset in the #PF error code if the page-fault was caused by a shadow stack access. (See “ Page-
Fault Error Code” on page 246).

5.8 Protection Across Paging Hierarchy

The privilege level and access type specified at each level of the page-trand ation hierarchy have a
combined effect on the protection of the translated physical page. Enabling and disabling write
protection via CRO.WPfurther qualifies the protection effect on the physical page.

Table 5-2 showsthe overall effect that privilege level and access type have on physical-page
protection when write protection is disabled (CRO.WP=0). In this case, when any trand ation-table
entry is specified as supervisor level, the physical page isasupervisor page and can only be accessed
by software running at CPL 0, 1, or 2. Such a page allows read/write access even if all levels of the
page-trand ation hierarchy specify read-only access.

Page Translation and Protection [AM D PUb“C Use] 155

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Table 5-2. Physical-Page Protection, CR0O.WP=0

Page-Map Level-4 Page-Directory- Page-Directory Effective Result on
Entry Pointer Entry Entry Page-Table Entry Physical Page
u/s R/W u/s R/W u/s R/W u/s R/W u/s R/W
S —_ —_ —_ — —_ — —_
— — S — — — — —
S R/W
— — — — S — — —
—_ —_ —_ —_ — —_ S —_
U R U — U — U —
U — U R U — U — 1
U R
U — U — U R U —
U — U — U — U R
U R/W U R/W U R/W U R/W U R/W

Note:
S= Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R= Read-Only Access, R'W = Read/Write Access, —= Don't
Care.
Note:
1. Supervisor-level programs can access these pages as R/W.

If all table entriesin the tranglation hierarchy are specified as user level the physical pageisauser
page, and both supervisor and user software can accessit. In this case the physical pageisread-only if
any table entry in the trandation hierarchy specifies read-only access. All table entriesin the

trangl ation hierarchy must specify read/write access for the physical page to be read/write.

Table 5-3 shows the overall effect that privilege level and access type have on physical-page access
when write protection is enabled (CRO.WP=1). When any trand ation-table entry is specified as
supervisor level, the physical page isasupervisor page and can only be accessed by supervisor
software. In this case, the physical pageisread-only if any table entry in the trandation hierarchy
specifiesread-only access. All table entriesin the trandlation hierarchy must specify read/write access
for the supervisor page to be read/write.

156 Page Translation and Protection

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 5-3. Effect of CRO.WP=1 on Supervisor Page Access

Page-Map Page
Level-4 Dwgctory- PageDirectory Page Table Physical Page
Pointer Entry Entry
Entry
Entry
R/W R/W R/W R/W R/W
R — — —
— R — —
R
— — R —
— — — R
W W W W W
Note:
R = Read-Only Access Type, W = Read/Wtite Access Type, —= Don’t Care.
Physical page isin supervisor mode, as determined by U/S settings in Table 5-2.

5.8.1 Access to User Pages when CRO.WP=1

Asshown in Table 5-2 on page 156, read/write access to user-level pages behaves the same as when
write protection is disabled (CRO.WP=0), with one critical difference. When write protection is
enabled, supervisor programs cannot write into read-only user pages.

5.9 Effects of Segment Protection

Segment-protection and page-protection checks are performed serially by the processor, with
segment-privilege checks performed first, followed by page-protection checks. Page-protection
checks are not performed if a segment-protection violation isfound. If aviolation isfound during
either segment-protection or page-protection checking, an exception occurs and no memory accessis
performed. Segment-protection violations cause either ageneral-protection exception (#GP) or astack
exception (#SS) to occur. Page-protection violations cause a page-fault exception (#PF) to occur.

Page Translation and Protection [AM D PUb“C Use] 157

AMDAA
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

158 [AM D PUblIC Use] Page Translation and Protection

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

6 System Instructions

System instructions provide control over the resources used to manage the processor operating
environment. Thisincludes memory management, memory protection, task management, interrupt
and exception handling, system-management mode, software debug and performance analysis, and
model-specific features. M ost instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some instructions can be executed at
any privilegelevel.

Table 6-1 summarizes the instructions used for system management. These include al privileged
instructions, instructions whose privilege requirement is under the control of system software, non-
privileged instructions that are used primarily by system software, and instructions used to transfer
control to system software. Most of the instructionslisted in Table 6-1 are summarized in this chapter,
although afew areintroduced el sewherein this manual, asindicated in the Reference column of
Table 6-1.

For detailson individual system instructions, see “ System Instruction Reference” in Volume 3.

Table 6-1. System Management Instructions

Privilege
Mnemonic Name Reference
CPL=0| o/st | Any
i o “Adjusting Access Rights’ on

ARPL Adjust Requestor Privilege Level X page 169

“Global Interrupt Flag, STGI and
CLGI Clear Global Interrupt Flag X CLGI Instructions’ on page 498

“CLI and STI Instructions’ on
CLI Clear Interrupt Flag X page 167
CLRSSBSY Clear Shadow Stack Busy X “CLRSSBSY” on page 171
CLTS Clear Task-Switched Flag in CRO X “CLTS Instruction” on page 167
HLT Halt X “Processor Halt” on page 170
INCSSP Increment SSP X “INCSSP” on page 171
INT3 Interrupt to Debug Vector X Breakpoint Instruction (INT3)” on

page 382
INVD Invalidate Caches X “Cache Management” on page 166
INVLPG Invalidate TLB Entry X “RDSSP’ on page 171
INVLPGA Invalidate TLB Entry in a Specified X “Invalidate Page, Alternate ASID”

ASID on page 498
Invalidate TLB Entries with “INVLPGB Instruction” on

INVLPGB Broadcast X page 166

Note:
1. The operating system controls the privilege required to use the instruction.

System Instructions [AM D PUb“C Use] 159

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Table 6-1. System Management Instructions (continued)

1. The operating system controls the privilege required to use the instruction.

Privilege
Mnemonic Name Reference
CPL=0| o/st | Any
INVLPCID Invalidate TLB Entriesin Specified X “SETSSBSY” on page 171
Processor Context
“Returning From Interrupt
IRETX Interrupt Return (all forms) X Procedures’ on page 260
LAR Load Access-Rights Byte X Checking Access Rights” on
page 169
LGDT Loaq Global-Descriptor-Table X .
Register “LGDT and LIDT Instructions’ on
} iptor- e 168
LIDT Loa(_:l Interrupt-Descriptor-Table X pag
Register
Load Local-Descriptor-Table “LLDT and LTR Instructions’ on
LLDT : X
Register page 168
LMSW Load Machine-Status Word X LMSW and SMSW Instructions
on page 166
- “Checking Segment Limits’ on
LSL Load Segment Limit X page 169
LTR L oad Task Register X LLDT and LTR Instructions’ on
page 168
MONITOR Setup Monitor Address X --
MOV CRn Move to/from Control Registers X MOV CRn Instructions” on
page 166
MOV DRn Move to/from Debug Registers X Accessing Debug Registers” on
page 167
MWAIT Monitor Wait X -
RDFSBASE Read FS Base Address X “RDFSBASE, RDGSBASE,
WRFSBASE, and WRGSBASE
RDGSBASE Read GS Base Address Instructions’ on page 168
. . “RDMSR and WRM SR
RDMSR Read Model-Specific Register X Instructions’ on page 167
RDPMC Read Performance-Monitor Counter X “RDPMC Instruction” on page 167
RDSSP Read SSP X |“RDSSP’ onpage 171
RDTSC Read Time-Stamp Counter X “RDTSC Instruction” on page 167
RDTSCP Read Time-Stamp Counter and X “RDTSCP Ingtruction” on page 167
Processor ID
RSM Return from System-Management X |“Leaving SMM” on page 316
Mode
RSTORSSP Restore SSP X |“RSTORSSP’ on page 171
Note:

160

[AMD Public Use]

System Instructions

AMDA

24593—Rev. 3.36—O0October 2020

Table 6-1. System Management Instructions (continued)

AMDG64 Technology

1. The operating system controls the privilege required to use the instruction.

Privilege
Mnemonic Name Reference
CPL=0| o/st | Any
SAVEPREVSSP | Save Previous SSP X |“SAVEPREVSSP’ on page 171
SETSSBSY Set Shadow Stack Busy X “SETSSBSY” on page 171
SGDT Storg Global-Descriptor-Table X _
Register “SGDT and SIDT Instructions” on
} iotor- e 169
SIDT Storg Interrupt-Descriptor-Table X pag
Register
Secure Init and Jump with . -
SKINIT Attestation X Security” on page 524
Store Local-Descriptor-Table “SLDT and STR Instructions’ on
SLDT . X
Register page 169
SMSW Store Machine-Status Word X LMSW and SMSW Instructions
on page 166
“CLI and STI Instructions’ on
STI Set Interrupt Flag X page 167
“Global Interrupt Flag, STGI and
STGl Set Global Interrupt Flag X CLGI Instructions’ on page 498
STR Store Task Register X SLDT and STR Instructions’ on
page 169
SWAPGS 8\ng GS and Kernel GSbase X SWAPGS Instruction” on
Registers page 165
SYSCALL Fast System Call X SYSCALL and SYSRET” on
page 163
SYSENTER System Call X |“SYSENTER and SYSEXIT
SYSEXIT System Return X (Legacy Mode Only)” on page 165
SYSRET Fast System Return X SYSCALL and SYSRET” on
page 163
VERR Verify Segment for Reads X |“Checking Read/Write Rights’ on
VERW Verify Segment for Writes X |page169
VMLOAD Load State from VMCB X VMSAVE and VMLOAD
Instructions” on page 474
VMMCALL Call VMM X VMMCALL Instruction” on
page 499
VMRUN Run Virtual Machine X “VMRUN Instruction” on page 470
“VMSAVE and VMLOAD
VMSAVE Save State to VMCB X Instructions’ on page 474
WBINVD Writeback and Invalidate Caches X
: i “Cache Management” on page 166
WBNOINVD Writeback No Invalidate X
Note:

System Instructions

[AMD Public Use]

161

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 6-1. System Management Instructions (continued)

Privilege
Mnemonic Name Reference
CPL=0| o/st | Any

WRFSBASE Write FS Base Address X “RDFSBASE, RDGSBASE,

: WRFSBASE, and WRGSBASE
WRGSBASE Write GS Base Address X Instructions’ on page 168

. . . “RDMSR and WRM SR
WRMSR Write Model-Specific Register X Instructions’ on page 167
WRSS Write to Shadow Stack X |“WRSS’ on page 171
WRUSS Write to User Shadow Stack X “WRUSS’ on page 171

Note:
1. The operating system controls the privilege required to use the instruction.

User Mode Instruction Prevention (UMIP)

This security mode restricts certain instructions so that they do not reveal information about structures
that are controlled by the processor whenitisat CPL=0. The presence of the UMIPfeatureisindicated
by CPUID Function 0000_0007, ECX[2]=1. Thismodeisenabled by setting CR4 bit 11toal.
Attemptsto set CR4 bit 11 when the UMIPfeatureis not supported result in a#GPfault. Once
CR4[11] isset to 1, the SGDT, SIDT, SLDT, SMSW and STR instructions become available only at
CPL=0. Any attempt to execute them with CPL>0 resultsin a#GPfault with error code 0.

The following instructions are summarized in this chapter but are not categorized as system
instructions, because of their importance to application programming:

* The CPUID instruction returns information critical to system software in initializing the operating
environment. It isfully described in Section 3.3, “ Processor Feature Identification,” on page 66.

* The PUSHF and POPF instructions set and clear certain rFL AGS bits depending on the processor
operating mode and privilege level. These dependencies are described in “POPF and PUSHF
Instructions” on page 167.

 The MOV, PUSH, and POP instructions can be used to load and store segment registers, as
described in “MOV, POPR, and PUSH Instructions’ on page 168.

6.1 Fast System Call and Return

Operating systems can use both paging and segmentation to implement protected memory models.
Segment descriptors provide the necessary memory protection and privilege checking for segment
accesses. By setting segment-descriptor fields appropriately, operating systems can enforce access
restrictions as needed.

A disadvantage of segment-based protection and privilege checking is the overhead associated with
loading a new segment selector (and its corresponding descriptor) into a segment register. Even when

162

[AMD Public Use] System Instructions

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

using the flat-memory model, this overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are reloaded with different segment descriptors.

To initiate acall to the operating system, an application transfers control to the operating system
through a gate descriptor (call, interrupt, trap, or task gate). In the past, control was transferred using
either afar CALL instruction or asoftware interrupt. Transferring control through one of these gatesis
slowed by the segmentation-related overhead, asisthe later return using afar RET or IRET
instruction. The following checks are performed when control istransferred in this manner:

» Selectors, gate descriptors, and segment descriptors arein the proper form.

» Descriptorslie within the bounds of the descriptor tables.

» Gate descriptors reference the appropriate segment descriptors.

» Thecaler, gate, and target privileges all allow the control transfer to take place.

» Thestack created by the call has sufficient propertiesto allow the transfer to take place.

In addition to these call-gate checks, other checks are made involving the task-state ssgment when a
task switch occurs.

6.1.1 SYSCALL and SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SY SRET are low-latency system call and
return instructions. These instructions assume the operating system implements a flat-memory model,
which greatly simplifies callsto and returns from the operating system. This simplification comes
from eliminating unneeded checks, and by loading pre-determined valuesinto the CS and SS segment
registers (both visible and hidden portions). Asaresult, SY SCALL and SY SRET can take fewer than
one-fourth the number of internal clock cyclesto complete than thelegacy CALL and RET
instructions. SY SCALL and SY SRET are particularly well-suited for use in 64-bit mode, which
requires implementation of a paged, flat-memory model.

SYSCALL and SY SRET require that the code-segment base, limit, and attributes (except for DPL) are
consistent for all application and system processes. Only the DPL isallowed to vary. The processor
assumes (but does not check) that the SY SCALL target CS segment descriptor entry has DPL=0 and
the SY SRET target CS segment descriptor entry has DPL=3.

For detailson the SY SCALL and SY SRET instructions, see “ System Instruction Reference” in
Volume 3.

Because SY SCALL and SY SRET do not use the program stack to store return addresses, the shadow
stack mechanism is not used to validate their return addresses. However, when shadow stacks are
enabled, SY SCALL and SY SRET save and restore the current SSP as follows;

» |If the shadow stack feature is enabled at the current CPL (typically CPL=3), SY SCALL savesthe
current SSPtothe PL3_SSPMSR

« If shadow stacks are enabled at the target CPL (CPL=0), SY SCALL clearsthe SSPto 0.
e If shadow stacks are enabled at CPL=3, SY SRET restores SSPfrom PL3_SSPMSR.

System Instructions [AM D PUb“C Use] 163

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR registers are model-specific
registers (MSRs) used to specify the target address of a SY SCALL instruction aswell asthe CS and
SS selectors of the called and returned procedures. The SFMASK register is used in long mode to
specify how rFLAGS is handled by these instructions. Figure 6-1 showsthe STAR, LSTAR, CSTAR,
and SFMASK register formats.

63 48 47 32 31 0
STAR C000_0081h | SYSRETCSandSS | SYSCALL CSand SS 32-bit SYSCALL Target EIP
LSTAR C000_0082h Target RIPfor 64-Bit-Mode Calling Software
CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software
SFMASK CO000_0084h Reserved, RAZ SYSCALL Flag Mask

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

STAR—The STAR register has the following fields (unless otherwise noted, all bits are
read/write):

SYSRET CSand SS Selectors—Bits 63:48. Thisfield is used to specify both the CSand SS
selectors|oaded into CS and SS during SY SRET. If SY SRET isreturning to 32-bit mode
(either legacy or compatibility), thisfield is copied directly into the CS selector field. If

SY SRET isreturning to 64-bit mode, the CS selector is set to thisfield + 16. SS.Sel isset to
thisfield + 8, regardless of the target mode. Because SY SRET always returnsto CPL 3, the
RPL bits 49:48 should beinitialized to 11b.

SYSCALL CSand SS Selectors—Bits47:32. Thisfield is used to specify both the CS and SS
selectors|oaded into CS and SS during SY SCALL. Thisfield iscopied directly into CS.Sel.
SS.Sel isset tothisfield + 8. Because SY SCALL always switchesto CPL 0O, the RPL bits
33:32 should be initialized to 00b.

32-bit SYSCALL Target EIP—BIts 31:0. Thisisthe target EIP of the called procedure.

The legacy STAR register is not expanded in long mode to provide a 64-bit target RIP address.

Inst

ead, long mode provides two new STAR registers—long STAR (LSTAR) and compatibility

STAR (CSTAR)—that hold a 64-hit target RIP.

LSTAR and CSTAR—The LSTAR register holds the target RIP of the called procedure in long
mode when the calling software isin 64-bit mode. The CSTAR register holds the target RIP of the
called procedure in long mode when the calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR and CSTAR registers. If the RIP written
to either of the MSRs is not in canonical form, a #GP fault is generated on the WRMSR
instruction.

164

[AMD Public Use] System Instructions

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

e SFMASK—The SFMASK register is used to specify which RFLAGS bits are cleared during a
SYSCALL. In long mode, SFMASK is used to specify which RFLAGS bits are cleared when
SYSCALL isexecuted. If abitin SFMASK isset to 1, the corresponding bit in RFLAGSiscleared
to 0. If abitin SFMASK iscleared to O, the corresponding RFLAGS bit is not modified.

6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET, SYSENTER and

SY SEXIT are low-latency system call and return instructions designed for use by system and
application software implementing a flat-memory model. However, these instructions areillegal in
long mode and result in an undefined opcode exception (#UD) if software attempts to use them.
Software should use the SY SCALL and SY SRET instructions when running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specific registers (MSRs) are used to specify the
target address and stack pointersfor the SY SENTER instruction aswell asthe CS and SS selectors of
the called and returned procedures. Theregister fields are:

* SYSENTER Target CS—Holdsthe CS selector of the called procedure.

* SYSENTER Target ESP—Holds the called-procedure stack pointer. The SS selector is updated
automatically to point to the next descriptor entry after the SY SENTER Target CS, and ESP isthe
offset into that stack segment.

* SYSENTER Target EIP—Holdsthe offset into the CS of the called procedure.
Figure 6-2 shows the register formats and their corresponding MSR IDs.

63 32 31 16 15 0
SYSENTER_CS 174h SYSENTER Target CS
SYSENTER_ESP 175h SYSENTER Target ESP
SYSENTER_EIP 176h SYSENTER Target EIP

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

6.1.3 SWAPGS Instruction

The SWAPGS instruction provides afast method for system software to load a pointer to system data
structures. SWA PGS can be used upon entering system-software routines asaresult of aSY SCALL
instruction or asaresult of an interrupt or exception. Before returning to application software,

SWA PGS can restore an application data-structure pointer that was replaced by the system data-
structure pointer.

System Instructions [AM D PUb“C Use] 165

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

SWA PGS exchanges the base-address value located in the Kernel GSbase model -specific register

(M SR address CO00_0102h) with the base-address value located in the hidden portion of the GS
selector register (GS.base). This exchange allows the system-kernel software to quickly access kernel
data structures by using the GS segment-override prefix during memory references.

The need for SwapGS arises from the requirement that, upon entry to the OS kernel, the kernel needs
to obtain a 64-hit pointer to its essential data structures. When using SY SCALL to implement system
calls, no kernel stack exists at the OS entry point. Neither isthere astraightforward method to obtain a
pointer to kernel structures, from which the kernel stack pointer could be read. Thus, the kernel cannot
save GPRs or reference memory. SwapGS does not require any GPR or memory operands, so no
registers need to be saved before using it. Similarly, when the OS kernel is entered viaan interrupt or
exception (wherethe kernel stack isalready set up), SwapGS can be used to quickly get apointer to the
kernel data structures.

See“FSand GS Registersin 64-Bit Mode” on page 76 for more information on using the GS.base
register in 64-bit mode.

6.2 System Status and Control

System-status and system-control instructions are used to determine the features supported by a
processor, gather information about the current execution state, and control the processor operating
modes.

6.2.1 Processor Feature Identification (CPUID)

CPUID Instruction. The CPUID instruction provides complete information about the processor
implementation and its capabilities. Software operating at any privilege level can execute the CPUID
instruction to collect thisinformation. System software normally usesthe CPUID instruction to
determine which optional features are available so the system can be configured appropriately. See
Section 3.3, “Processor Feature Identification,” on page 66.

6.2.2 Accessing Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to copy data between the control
registers and the general-purpose registers. These instructions are privileged and cause a general -
protection exception (#GP) if non-privileged software attempts to execute them.

LMSW and SMSW Instructions. The machine statusword islocated in CRO register bits 15:0. The
load machine status word (LM SW) instruction writes only the least-significant four status-word bits
(CRO[3:0]). All remaining status-word bits (CRO[15:4]) are left unmodified by the instruction. The
instruction is privileged and causes a#GPto occur if non-privileged software attemptsto executeit.

The store machine status word (SMSW) instruction stores all 16 status-word bits (CR0[15:0]) into the
target GPR or memory location. The instruction isnot privileged and can be executed by all software.

166 [AMD PUbllC Use] System Instructions

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

CLTS Instruction. The clear task-switched bit instruction (CLTS) clears CRO.TSto 0. The CRO.TS
bitisset to 1 by the processor every time atask switch takes place. The bit isuseful to system software
in determining when the x87 and multimediaregister state should be saved or restored. See “ Task
Switched (TS) Bit” on page 44 for more information on using CRO.TS to manage x87-instruction
state. The CLTSinstruction is privileged and causes a#GP to occur if non-privileged software
attemptsto executeit.

6.2.3 Accessing the RFLAGS Register

The RFLAGS register contains both application and system bits. This section describesthe
instructions used to read and write system bits. Descriptions of instruction effects on application flags
can befound in “Flags Register” in Volume 1 and “Instruction Effectson rFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push rFLAGS nstructions are used for moving data
between the rFLAGS register and the stack. They are not strictly system instructions, but their
behavior is mode-dependent.

CLl and STl Instructions. Theclear interrupt (CLI) and set interrupt (ST1) instructions modify only
the RFLAGS.IF bit or RFLAGS.VIF bit. Clearing RFLAGS.IF to O causes the processor to ignore
maskable interrupts. Setting RFLAGS.IF to 1 causes the processor to allow maskable interrupts.

See “Virtua Interrupts’ on page 271 for more information on the operation of these instructions when
virtual-8086 mode extensions are enabled (CR4.VME=1).

6.2.4 Accessing Debug Registers

The MOV DRninstructions are used to copy data between the debug registers and the general -purpose
registers. These instructions are privileged and cause a general-protection exception (#GP) if non-
privileged software attempts to execute them. See “ Debug Registers’ on page 370 for adetailed
description of the debug registers.

6.2.5 Accessing Model-Specific Registers

RDMSR and WRMSR Instructions. The read/write model-specific register instructions (RDMSR
and WRM SR) can be used by privileged software to access the 64-bit M SRs. See “Model-Specific
Registers (MSRs)” on page 59 for details about the MSRs.

RDPMC Instruction. Theread performance-monitoring counter instruction, RDPMC, isused to read
the model-specific performance-monitoring counter registers.

RDTSC Instruction. Theread time-stamp counter instruction, RDTSC, is used to read the model -
specific time-stamp counter (TSC) register.

RDTSCP Instruction. Theread time-stamp counter and processor ID instruction, RDTSCP, is used
to read the model -specific time-stamp counter (TSC) register. aswell asthe low 32 bits of the
TSC_AUX register (MSR C000_0103h).

System Instructions [AM D PUb“C Use] 167

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

6.3 Segment Register and Descriptor Register Access

The AMDG64 architecture supports the legacy instructions that |oad and store segment registers and
descriptor registers. In some cases the instruction capabilities are expanded to support long mode.

6.3.1 Accessing Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions can be used to load a selector
into a segment register from a general -purpose register or memory (MOV) or from the stack (POP).
Any segment register, except the CSregister, can be loaded with the MOV and POP instructions. The
CSregister must be loaded with afar-transfer instruction.

All segment register selectors can be stored in ageneral-purpose register or memory using the MOV
instruction or pushed onto the stack using the PUSH instruction.

When a selector isloaded into a segment register, the processor automatically |oads the corresponding
descriptor-table entry into the hidden portion of the selector register. The hidden portion contains the
base address, limit, and segment attributes.

Segment-load and segment-store instructions work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is loaded into the hidden portion of the
segment descriptor register. However, the contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS segment-register base fields—see “FS and
GS Registersin 64-Bit Mode” on page 76 for more information.

The ability to use segment-load instructions allows a 64-hit operating system to set up segment
registers for a compatibility-mode application before switching to compatibility mode.

6.3.2 Accessing Segment Register Hidden State

WRMSR and RDMSR Instructions. The base addressfield of the hidden state of the FS and GS
registers are mapped to M SRs and may be read and written by privileged software when running in 64-
bit mode.

RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE Instructions. When supported and
enabled, these instructions allow software running at any privilege level to read and write the base
addressfield of the hidden state of the FS and GS segment registers. These instructions are only
defined in 64-bit mode.

6.3.3 Accessing Descriptor-Table Registers

LGDT and LIDT Instructions. Theload GDTR (LGDT) and load IDTR (LIDT) instructionsload a
pseudo-descriptor from memory into the GDTR or IDTR registers, respectively.

LLDT and LTR Instructions. Theload LDTR(LLDT) andload TR (LTR) instructionsload a system-
segment descriptor from the GDT into the LDTR and TR segment-descriptor registers (hidden
portion), respectively.

168 [AMD PUbllC Use] System Instructions

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

SGDT and SIDT Instructions. Thestore GDTR(SGDT) and store IDTR(SIDT) instructionsreverse
the operation of theLGDT and LIDT instructions. SGDT and SIDT store a pseudo-descriptor from the
GDTR or IDTR register into memory.

SLDT and STR Instructions. Inall modes, thestore LDTR (SLDT) and store TR (STR) instructions
storethe LDT or task selector from the visible portion of the LDTR or TR register into ageneral-
purpose register or memory, respectively. The hidden portion of the LDTR or TR register isnot stored.

6.4 Protection Checking

Several instructions are provided to allow software to determine the outcome of a protection check
before performing amemory access that could result in a protection violation. By performing the
checks before amemory access, software can avoid violations that result in a general-protection
exception (#GP).

6.4.1 Checking Access Rights

LAR Instruction. Theload access-rights (LAR) instruction can be used to determineif accessto a
segment is allowed, based on privilege checks and type checks. The LAR instruction uses a segment-
selector in the source operand to reference adescriptor inthe GDT or LDT. LAR performs a set of
access-rights checks and, if successful, loads the segment-descriptor access rightsinto the destination
register. Software can further examine the access-rights bitsto determine if accessinto the segment is
alowed.

6.4.2 Checking Segment Limits

LSL Instruction. Theload segment-limit (L SL) instruction uses a segment-selector in the source
operand to reference adescriptor inthe GDT or LDT. LSL performsaset of preliminary access-rights
checks and, if successful, |oads the segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer offsets to prevent segment limit
violations.

6.4.3 Checking Read/Write Rights

VERR and VERW Instructions. Theverify read-rights (VERR) and verify write-rights (VERW) can
be used to determine if atarget code or data segment (not a system segment) can be read or written
from the current privilege level (CPL). The source operand for these instructionsis a pointer to the
segment selector to betested. If the tested segment (code or data) isreadable from the current CPL, the
VERR ingtruction sets RFLAGS.ZF to 1, otherwisg, it is cleared to zero. Likewise, if the tested data
segment iswritable, the VERW instruction setsthe RFLAGS.ZF to 1. A code segment cannot be tested
for writability.

6.4.4 Adjusting Access Rights

ARPL Instruction. Theadjust RPL-field (ARPL) instruction can be used by system software to
prevent access into privileged-data segments by lower-privileged software. This can happen if an

System Instructions [AM D PUb“C Use] 169

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

application passes a selector to system software and the selector RPL islessthan (has greater privilege
than) the calling-application CPL. To prevent this surrogate access, system software executes ARPL
with the following operands:

» Thedestination operand is the data-segment selector passed to system software by the application.

» The source operand is the application code-segment selector (available on the system-software
stack asaresult of the CALL into system software by the application).

ARPL isnot supported in 64-bit mode.

6.5 Processor Halt

Theprocessor halt instruction (HLT) haltsinstruction execution, leaving the processor in the halt state.
No registers or machine state are modified as aresult of executing the HLT instruction. The processor
remainsin the halt state until one of the following occurs:

* A non-maskableinterrupt (NMI).

* Anenabled, maskableinterrupt (INTR).
* Processor reset (RESET).

* Processor initialization (INIT).

* System-management interrupt (SM1).

6.6 Cache and TLB Management

Cache-management instructions are used by system software to maintain coherency within the
memory hierarchy. Memory coherency and caches are discussed in Chapter 7, “Memory System.”
Similarly, TL B-management instructions are used to maintain coherency between page translations
cached in the TLB and the trandlation tables maintained by system software in memory. See
“Tranglation-Lookaside Buffer (TLB)” on page 147 for more information.

6.6.1 Cache Management

WBINVD and WBNOINVD Instructions. Thewriteback and invalidate (WBINVD) and writeback
no invalidate (WBNOINVD) instructions are used to write all modified cache linesto memory so that
memory contains the most recent copy of data. After the writesare complete, the WBINV D instruction
invalidates all cache lines, whereas the WBNOINV D instruction may leave the linesin the cache
hierarchy in anon-modified state. These instructions operate on all cachesin the memory hierarchy,
including caches that are external to the processor. See the instructions' description in Volume 3 for
further operational details.

INVD Instruction. Theinvalidate (INVD) instructionisused toinvalidate all cachelinesin all caches
in the memory hierarchy. Unlike the WBINV D instruction, no modified cache lines are written to
memory. The INV D instruction should only be used in situations where memory coherency is not
required.

170 [AMD PUbllC Use] System Instructions

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

6.6.2 TLB Invalidation

INVLPG Instruction. Theinvalidate TLB entry (INVLPG) instruction can be used to invalidate
specific entrieswithin the TLB. The source operand is a virtual-memory address that specifiesthe
TLB entry to beinvalidated. Invalidating a TL B entry does not remove the associated page-table entry
from the data cache. See * Trandlation-L ookaside Buffer (TLB)” on page 147 for more information.

INVLPGA Instruction. Theinvalidate TLB entry in a Specified ASD instruction (INVLPGA) can be
used to invalidate TL B entries associated with the specified ASID. See “Invalidate Page, Alternate
ASID” on page 498.

INVLPGB Instruction. Theinvalidate TLB with Broadcast instruction (INVLPGB) can be used to
invalidate a specified range of TLB entries on thelocal processor and broadcast the invalidation to
remote processors. See“INVLPGB” in Volume 3.

INVLPCID Instruction. Theinvalidate TLB entriesin Specified PCID instruction (INVPCID) can be
used to invalidate TLB entries of the specified Processor Context ID. See“INVPCID” in Volume 3.

6.7 Shadow Stack Management

Thefollowing instructions are available to software for use in managing shadow stacksif the shadow
stack featureis present asindicated by CPUID FnO000 0007 x0 ECX[CET_SS] (bit 7) =1. Except
for RDSSP, attempting to execute these instructions when shadow stacks are disabled resultsina#UD
exception. For more information refer to the detailed instruction descriptionsin APM volume 3.

CLRSSBSY. Validatesashadow stack token and clears the tokens busy bit. Thisisaprivileged
instruction.

INCSSP. Increment SSPby ‘n’ stack frames. Used to pop unneeded items from a shadow stack.
RDSSP. Read the SSPinto aGPR. Treated asaNOP if shadow stacks are disabled.

RSTORSSP. Used to switch shadow stacks. Expects a‘ shadow stack restore token’ at the top of the
new shadow stack. Upon validating thistoken, setsthe token’ s busy bit and sets SSPto the top of the
new shadow stack.

SAVEPREVSSP. Copiesa‘previous SSPtoken’ from the current shadow stack back to the previous
stack for later use by an RSTORSSP instruction.

SETSSBSY. Validatesthe shadow stack token pointed to by the PLO_SSPMSR. If valid, setsthe
busy bit to 1 and sets SSP=PL0O_SSP. Thisisaprivileged instruction.

WRSS. Writesthe source operand to a shadow stack. Thisinstruction must be enabled intheU_CET
and S_CET MSRs, otherwise a#UD is generated.

WRUSS. Writesthe source operand to a user shadow stack. Thisisa privileged instruction.

System Instructions [AM D PUbllC Use] 171

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

7 Memory System

This chapter describes:

e Cache coherency mechanisms

» Cache control mechanisms

e Memory typing

e Memory mapped I/O

e Memory ordering rules

e Seridlizing instructions

Figure 7-1 on page 174 shows a conceptual picture of a processor and memory system, and how data
and instructions flow between the various components. This diagram is not intended to represent a

specific microarchitectural implementation but instead is used to illustrate the major memory-system
components covered by this chapter.

Memory System [AMD PUb“C Use] 173

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Main Memory

System Bus Interface

A

r

A 4

A 4

L2 Cache

L1

Instruction Cache

r

A 4

L1
Data Cache

A A

Write-Combining
Buffers

Write Buffers

A

A 4

Load/Store Unit

r

A 4

\ 4

Execution Units

Processor Chip :

Figure 7-1.

Processor and Memory System

The memory-system components described in this chapter are shown as unshaded boxesin Figure 7-1.
Those items are summarized in the following paragraphs.

Main memory is external to the processor chip and isthe memory-hierarchy level farthest from the

processor execution units.

Caches are the memory-hierarchy levels closest to the processor execution units. They are much
smaller and much faster than main memory, and can be either internal or external to the processor chip.
Caches contain copies of the most frequently used instructions and data. By allowing fast accessto
frequently used data, software can run much faster than if it had to accessthat datafrom main memory.
Figure 7-1 shows three caches, all internal to the processor:

174

[AMD Public Use]

Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

e L1 Data Cache—The L1 (level-1) data cache holds the data most recently read or written by the
software running on the processor.

e L1Instruction Cache—TheL1 instruction cacheissimilar to the L1 data cache except that it holds
only the instructions executed most frequently. In some processor implementations, the L1
instruction cache can be combined with the L1 data cache to form aunified L1 cache.

* L2 Cache—The L2 (level-2) cacheisusually several timeslarger than the L1 caches, but itisalso
slower. It is common for L2 caches to be implemented as a unified cache containing both
instructions and data. Recently used instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive, meaning it does not cache information
contained in the L1 cache. Conversely, inclusive L2 caches contain a copy of the L1-cached
information.

Memory-read operations from cacheable memory first check the cache to seeiif the requested
information isavailable. A read hit occursif the information isavailable in the cache, and aread miss
occursif theinformation is not available. Likewise, awrite hit occursif the memory write can be
stored in the cache, and awrite miss occursif it cannot be stored in the cache.

Cachesaredivided into fixed-size blocks called cachelines. The cache alocateslinesto correspond to
regionsin memory of the same size asthe cache line, aligned on an address boundary equal to the
cache-line size. For example, in a cache with 32-byte lines, the cache lines are aligned on 32-byte
boundaries and byte addresses 0007h and O01Eh are both located in the same cache line. The size of a
cache line isimplementation dependent. M ost implementations have either 32-byte or 64-byte cache
lines. Theimplemented cache line sizeis reported by CPUID Fn8000_0005 and FN8000_0006 for the
various caches, as described in Appendix E of Volume 3.

The process of loading datainto acacheisacache-linefill. Evenif only asingle byte isrequested, all
bytesin a cache line are loaded from memory. Typically, acache-linefill must remove (evict) an
existing cache line to make room for the new line loaded from memory. This processis called cache-
line replacement. If the existing cache line was modified before the replacement, the processor
performs a cache-line writeback to main memory when it performs the cache-linefill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can aso maintain cache coherency by internally probing (checking) the other caches and
write buffersfor amore recent version of the requested data. External devices can also check processor
caches for more recent versions of data by externally probing the processor. Throughout this
document, the term probeis used to refer to external probes, whileinternal probes are always qualified
with the word internal.

Write buffers temporarily hold datawrites when main memory or the caches are busy with other
memory accesses. The existence of write buffersisimplementation dependent.

Implementations of the architecture can use write-combining buffersif the order and size of non-
cacheable writes to main memory is not important to the operation of software. These buffers can
combine multiple, individual writesto main memory and transfer the datain fewer bus transactions.

Memory System [AMD PUb“C Use] 175

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

7.1 Single-Processor Memory Access Ordering

Theflexibility with which memory accesses can be ordered isclosely related to the flexibility inwhich
a processor implementation can execute and retire instructions. Instruction execution creates results
and status and determines whether or not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order, to software-visible resources such as
memory, caches, write-combining buffers, and registers, or it causes an exception to occur if
Instruction execution created one.

Implementations of the AMD64 architecture retireinstructionsin program order, but implementations
can execute instructionsin any order, subject only to data dependencies. |mplementations can aso
specul atively execute instructions—executing instructions before knowing they are needed. Internally,
implementations manage data reads and writes so that instructions complete in order. However,
because implementati ons can execute instructions out of order and specul atively, the sequence of
memory accesses performed by the hardware can appear to be out of program order. The following
sections describe the rules governing memory accesses to which processor implementations adhere.
These rules may be further restricted, depending on the memory type being accessed. Further, these
rules govern single processor operation; see “Multiprocessor Memory Access Ordering” on page 178
for multiprocessor ordering rules.

7.1.1 Read Ordering

Generally, reads do not affect program order because they do not affect the state of software-visible
resources other than register contents. However, some system devices might be sensitiveto reads. In
such a situation software can map aread-sensitive device to amemory type that enforces strong read-
ordering, or use read/write barrier instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read ordering:

» Out-of-order reads are allowed to the extent that they can be performed transparently to software,
such that the appearance of in-order execution is maintained. Out-of-order reads can occur as a
result of out-of-order instruction execution or speculative execution. The processor can read
memory and perform cache refills out-of-order to allow out-of-order execution to proceed.

* Speculative reads are alowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows the instruction will actually complete. For example, the
processor can predict abranch will occur and begin executing instructions following the predicted
branch before it knows whether the prediction is valid. When one of the speculative instructions
reads data from memory, the read itself is speculative. Cache refills may also be performed
speculatively.

* Reads can be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stallsif the read datarequired by aninstruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

* A read cannot be reordered ahead of a prior write if the read is from the same location as the prior
write. In this case, the read instruction stalls until the write instruction completes execution. The

176 [AMD PUb“C Use] Memory System

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

read instruction requires the result of the write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to the read instruction before it is
actually written to memory.

Instruction fetching constitutes a parallel, asynchronous stream of reads that is independent from
and unordered with respect to the read accesses performed by loads in that instruction stream.

7.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The following
rules govern write ordering:

Generally, out-of-order writes are not allowed. Write instructions executed out of order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

It is possible for writes to write-combining memory types to appear to complete out of order,
relative to writes into other memory types. See “Memory Types’ on page 184 and “Write
Combining” on page 190 for additional information.

Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until al previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

Write buffering is alowed. When awrite instruction completes and commits its result, that result
can be buffered until it is actually written to system memory in program order. Although the write
buffer itself is not directly accessible by software, the results in the buffer are accessible by
subsequent memory accesses to the locations that are buffered, including reads for which only a
subset of bytes being accessed are in the buffer. For example, a doubleword read that overlaps a
single modified byte in the write buffer can return the buffered value for that byte before that write
has been committed to memory.

In general, any read from cacheable memory returns the net result of all prior globally and locally
visible writesto those bytes, as performed in program order. A given implementation may provide
bytes from the write buffer to satisfy this, or may stall the read until any overlapping buffered
writes have been committed to memory. For cacheable memory types, the write buffer can be read
out-of-order and speculatively, just like memory.

Write combining isalowed. In some situations software can relax the write-ordering rules through
the use of a Write Combining memory type or non-temporal store instructions, and allow several
writes to be combined into fewer writes to memory. When write-combining is used, it is possible
for writes to other memory types to proceed ahead of (out-of-order) memory-combining writes,
unless the writes are to the same address. Write-combining should be used only when the order of
writes does not affect program order (for example, writes to a graphics frame buffer).

Memory System [AMD PUbllC Use] 177

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

7.1.3 Read/Write Barriers

When the order of memory accesses must be strictly enforced, software can use read/write barrier
instructionsto force reads and writesto proceed in program order. Read/write barrier instructionsforce
all prior reads or writes to compl ete before subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated read, write, and read/write barrier
instructions (respectively). Serializing instructions, 1/0 instructions, and locked instructions
(including theimplicitly locked X CHG instruction) can also be used as read/write barriers. Barrier
instructions are useful for controlling ordering between differing memory types aswell aswithin one
memory type; see Section 7.3.1, “ Special Coherency Considerations,” on page 183 for details.

Table 7-1 on page 186 summarizes the memory-access ordering possible for each memory type
supported by the AMDG64 architecture.

7.2 Multiprocessor Memory Access Ordering

The term memory ordering refersto the sequence in which memory accesses are performed by the
memory system, as observed by all processors or programs.

To improve performance of applications, AMD64 processors can specul atively execute instructions
out of program order and temporarily hold out-of-order results. However, certain rules are followed
with regard to normal cacheable accesses on naturally aligned boundariesto WB memory.

In the examples below, al memory values areinitialized to zero.

From the point of view of a program, in ascending order of priority:

» All loads, stores and I/O operations from asingle processor appear to occur in program order to the
code running on that processor and all instructions appear to execute in program order.

» Successive stores from a single processor are committed to system memory and visible to other
processors in program order. A store by a processor cannot be committed to memory before aread
appearing earlier in the program has captured its targeted data from memory. In other words, stores
from a processor cannot be reordered to occur prior to aload preceding it in program order.

In this context:

- Loads do not pass previous loads (loads are not reordered). Stores do not pass previous stores
(stores are not reordered)

Processor O Processor 1
StoreA « 1 Load B
StoreB « 1 Load A

Load A cannot read O when Load B reads 1. (This rule may be violated in the case of |oads as
part of astring operation, in which one iteration of the string reads O for Load A while another
iteration reads 1 for Load B.)

- Storesdo not pass |oads

178 [AMD PUb“C Use] Memory System

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Processor O Processor 1
Load A Load B
StoreB « 1 StoreA « 1

Load A and Load B cannot both read 1.

e Storesfrom aprocessor appear to be committed to the memory system in program order; however,
stores can be delayed arbitrarily by store buffering while the processor continues operation.
Therefore, storesfrom a processor may not appear to be sequentially consistent.

Processor O Processor 1

StoreA « 1 StoreB « 1

Store A « 2 StoreB « 2
Load B Load A

Both Load A and Load B may read 1. Also, due to possible write combining one or both
processors may not actually store a 1 at the designated |ocation.

» Non-overlapping Loads may pass stores.

Processor O Processor 1
StoreA « 1 StoreB « 1
Load B Load A

All combinations of values (00, 01, 10, and 11) may be observed by Processors 0 and 1.

- Where sequential consistency is needed (for example in Dekker’ s algorithm for mutual
exclusion), an MFENCE instruction should be used between the store and the subsequent load,
or alocked access, such as XCHG, should be used for the store.

Processor O Processor 1
StoreA <1 StoreB « 1
MFENCE MFENCE
Load B Load A

Load A and Load B cannot both read O.

- Loadsthat partially overlap prior stores may return the modified part of the load operand from
the store buffer, combining globally visible byteswith bytesthat are only locally visible. To
ensure that such loads return only aglobally visible value, an MFENCE or locked access must
be used between the store and the dependent load, or the store or load must be performed with
alocked operation such as XCHG.

- Storesto different locationsin memory observed from two (or more) other processorswill
appear in the same order to al observers. Behavior such asthat shown in this code example,

Memory System [AMD PUb“C Use] 179

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Processor 0 Processor 1 Processor X Processor Y
StoreA « 1 StoreB « 1
LoadA (1) Load B (1)
Load B (0) Load A (0)

in which processor X sees store A from processor 0 before store B from processor 1, while
processor Y sees store B from processor 1 before store A from processor O, is not allowed.

« Dependent stores between different processors appear to occur in program order, as shown in the
code example below.

Processor O Processor 1 Processor 2
StoreA « 1
Load A (2)
StoreB « 1
Load B (1)
Load A (1)

If processor 1 reads avalue from A (written by processor 0) before carrying out astoreto B, and if
processor 2 reads the updated value from B, a subsequent read of A must a so be the updated value.

* The loca visibility (within a processor) for a memory operation may differ from the global
visibility (from another processor). Using a data bypass, a local load can read the result of alocal
store in a store buffer, before the store becomes globally visible. Program order is still maintained
when using such bypasses.

Processor 0 Processor 1
StoreA 1 StoreB « 1
Loadrl A Load r3 B
Loadr2 B Load r4 A

Load A in processor 0 can read 1 using the data bypass, while Load A in processor 1 can read 0.
Similarly, Load B in processor 1 can read 1 while Load B in processor O can read 0. Therefore, the
resultrl=1,r2=0, r3=1andr4 =0 may occur. There are no constraints on the relative order of
when the Store A of processor 0 isvisible to processor 1 relative to when the Store B of processor
lisvisibleto processor O.

If avery strong memory ordering model is required that does not allow local store-load bypasses,
an MFENCE instruction or a synchronizing instruction such as XCHG or alocked Read-modify-
write should be used between the store and the subsequent load. This enforces a memory ordering
stronger than total store ordering.

Processor O Processor 1
StoreA « 1 StoreB « 1
MFENCE MFENCE

180 [AMD PUbllC Use] Memory System

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
Processor O Processor 1
Loadr1 A Load r3 B
Load r2 B Load r4 A

In this example, the MFENCE instruction ensures that any buffered stores are globally visible
before the loads are allowed to execute, sotheresult rl=1,r2=0, r3=1and r4 = 0 will not occur.

7.3 Memory Coherency and Protocol

Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol is also used to maintain
coherency between all processorsin amultiprocessor system. The cache-coherency protocol
supported by the AMD64 architecture isthe MOES (modified, owned, exclusive, shared, invalid)
protocol. The states of the MOESI protocol are:

» Invalid—A cachelineintheinvalid state does not hold avalid copy of the data. VValid copies of the
data can be either in main memory or another processor cache.

» Exclusive—A cachelinein the exclusive state holds the most recent, correct copy of the data. The
copy in main memory is also the most recent, correct copy of the data. No other processor holds a
copy of the data.

» Shared—A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holdsit in the owned state, then the copy in main memory is aso the most recent.

» Modified—A cache line in the modified state holds the most recent, correct copy of the data. The
copy in main memory is stale (incorrect), and no other processor holds a copy.

* Owned—A cache line in the owned state holds the most recent, correct copy of the data. The
owned stateis similar to the shared state in that other processors can hold a copy of the most recent,
correct data. Unlike the shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the datain the owned state—all other processors must hold the datain
the shared state.

Figure 7-2 on page 182 showsthe general MOESI state transitions possible with various types of
memory accesses. Thisisalogical software view, not ahardware view, of how cache-line state
transitions. I nstruction-execution activity and external -bus transactions can both be used to modify the
cache MOES state in multiprocessing or multi-mastering systems.

181

Memory System [AI\/ID Public USe]

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Reset Read Hit
INVD, WBINVD

Probe Write Hit

Invalid | | Exclusive

Read Miss, Exclusive

Modified

Read Hit
Probe Read Hit

Read Hit

Write Hit Write Hit

Read Hit
Probe Read Hit

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically other processors with their own
internal caches) need to acquire the most recent copy of databefore cachingit internally. That copy can
bein main memory or in the internal caches of other bus-mastering devices. When an external master
has a cache read-miss or write-miss, it probes the other mastering devices to determine whether the
most recent copy of dataisheld in any of their caches. If one of the other mastering devices holds the
most recent copy, it providesit to the requesting device. Otherwise, the most recent copy is provided
by main memory.

182

[AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

There are two general types of bus-master probes:

* Read probesindicate the external master is requesting the datafor read purposes.
* Write probesindicate the external master isrequesting the datafor the purpose of modifying it.

Referring back to Figure 7-2 on page 182, the state transitions involving probes areinitiated by other
processors and external bus masters into the processor. Some read probes are initiated by devices that
intend to cache the data. Others, such asthoseinitiated by 1/0 devices, do not intend to cache the data.
Some processor implementations do not change the dataM OES! stateif the read probeisinitiated by a
device that does not intend to cache the data.

State transitions involving read misses and write misses can cause the processor to generate probes
into external bus masters and to read main memory.

Read hits do not cause a M OESI-state change. Write hits generally cause a M OESI-state change into
the modified state. If the cache lineisalready in the modified state, awrite hit does not changeits state.

The specific operation of external-bus signals and transactions and how they influence acache MOES]
state are implementation dependent. For example, an implementation could convert awrite missto a
WB memory type into two separate MOESI -state changes. The first would be aread-miss placing the
cachelinein the exclusive state. Thiswould be followed by awrite hit into the exclusive cacheline,
changing the cache-line state to modified.

7.3.1 Special Coherency Considerations

In some cases, datacan be modified in amanner that isimpossible for the memory-coherency protocol
to handle due to the effects of instruction prefetching. In such situations software must use serializing
instructions and/or cache-invalidation instructions to ensure subsequent data accesses are coherent.

An exampleof thistype of asituation isapage-table update followed by accessesto the physical pages
referenced by the updated page tables. The following sequence of events showswhat can happen when
software changes the translation of virtual-page A from physical-page M to physical-page N:

1. Software invalidates the TLB entry. The tables that trandate virtual-page A to physical-page M
are now held only in main memory. They are not cached by the TLB.

2. Software changes the page-table entry for virtual-page A in main memory to point to physical-
page N rather than physical-page M.

3. Software accesses datain virtual-pageA.

During Step 3, software expects the processor to access the data from physical-page N. However, itis
possible for the processor to prefetch the data from physical-page M before the page table for virtual -
page A isupdated in Step 2. Thisis because the physical-memory references for the page tables are
different than the physical-memory references for the data. Because the physical-memory references
aredifferent, the processor does not recognize them as requiring coherency checking and believesitis
safe to prefetch the datafrom virtual-page A, which istrandated into aread from physical page M.
Similar behavior can occur when instructions are prefetched from beyond the page table update
instruction.

Memory System [AMD PUb“C Use] 183

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

To prevent this problem, software must use an INVLPG or MOV CR3 instruction immediately after
the page-table update to ensure that subsequent instruction fetches and data accesses use the correct
virtual-page-to-physical-page trandation. It is not necessary to perform a TLB invalidation operation
preceding the table update.

7.3.2 Access Atomicity

Cacheable, naturally-aligned single loads or stores of up to aquadword are atomic on any processor
model, as are misaligned loads or stores of less than a quadword that are contained entirely within a
naturally-aligned quadword. Misaligned load or store accessestypically incur asmall latency penalty.
M odel-specific relaxations of this quadword atomicity boundary, with respect to this latency penalty,
may be found in a given processor's Software Optimization Guide.

Misaligned accesses can be subject to interleaved accesses from other processors or cache-coherent
devices which can result in unintended behavior. Atomicity for misaligned accesses can be achieved
where necessary by using the XCHG instruction or any suitable LOCK -prefixed instruction. Notethat
misaligned locked accesses may incur asignificant performance penalty on various processor models.

7.4 Memory Types

Memory typeisan attribute that can be associated with aspecific region of virtual or physical memory.
Memory type designates certain caching and ordering behaviors for loads and stores to addressesin
that region. Most memory types are explicitly assigned, although some areinferred by the hardware
from current processor state and instruction context.

The AMDG64 architecture defines the following memory types:

» Uncacheable (UC)—Reads from, and writes to, UC memory are not cacheable. Reads from UC
memory cannot be speculative. Write-combining to UC memory is not allowed. Reads from or
writes to UC memory cause the write buffers to be written to memory and be invalidated prior to
the accessto UC memory.

The UC memory typeis useful for memory-mapped 1/0 devices where strict ordering of reads and
writes is important. Note that this strong ordering is with respect to UC accesses only; reads to
memory types which support specul ative operation may bypass non-conflicting UC accesses.

» CacheDisable (CD)—The CD memory typeisaform of uncacheable memory typethat isinferred
when the L1 caches are disabled but not invalidated, or for certain conflicting memory type
assignments from the Page Attribute Table (PAT) and Memory Type Range Register (MTRR)
mechanisms. The former case occurs when caches are disabled by setting CRO.CD to 1 without
invalidating the caches with either the INVD or WBINVD instruction for any referenceto aregion
designated as cacheable. Thelatter case occurs when a specific type has been assigned to avirtual
page via PAT, and a conflicting type has been assigned to the mapped physical pageviaan MTRR
(see “Combined Effect of MTRRs and PAT” on page 213 and “Combining Memory Types,
MTRRS’ on page 520 for details).

For the L1 data cache and the L2 cache, reads from, and writes to, CD memory that hit the cache,
or any other caches in the system, cause the cache line(s) to be invalidated before accessing main

184 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

memory. If a cache lineisin the modified state, the line is written to main memory prior to being
invalidated. The accessis allowed to proceed after any invalidations are complete.

For the L1 instruction cache, instruction fetches from CD memory that hit the cache read the
cached instructions rather than access main memory. Instruction fetches that miss the cache access
main memory and do not cause cache-line replacement. Writes to CD memory that hit in the
instruction cache cause the line to be invalidated.

* Write-Combining (WC)—Reads from, and writes to, WC memory are not cacheable. Reads from
WC memory can be speculative.

Writes to this memory type can be combined internally by the processor and written to memory as
asingle write operation to reduce memory accesses. For example, four word writesto consecutive
addresses can be combined by the processor into a single quadword write, resulting in one memory
accessinstead of four.

The WC memory type is useful for graphics-display memory buffers where the order of writesis
not important.

e Wite-Combining Plus (WC+)—WC+ is an uncacheable memory type, and combines writes in
write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to WC+
memory probe the caches on all processors (including the caches of the processor issuing the
reguest) to maintain coherency. This ensuresthat cacheable writes are observed by WC+ accesses.

* Wite-Protect (WP)—Reads from WP memory are cacheable and allocate cache lines on a read
miss. Reads from WP memory can be speculative.

Writes to WP memory that hit in the cache do not update the cache. Instead, all writes update
memory (write to memory), and writes that hit in the cache invalidate the cache line. Write
buffering of WP memory is allowed.

The WP memory type is useful for shadowed-ROM memory where updates must be immediately
visibleto all devicesthat read the shadow locations.

* Writethrough (WT)—Reads from WT memory are cacheable and allocate cache lines on a read
miss. Reads from WT memory can be speculative.

All writes to WT memory update main memory, and writes that hit in the cache update the cache
line (cache lines remain in the same state after a write that hits a cache line). Writes that miss the
cache do not allocate a cache line. Write buffering of WT memory is allowed.

* Writeback (WB)—Reads from WB memory are cacheable and allocate cache lines on aread miss.
Cache lines can be alocated in the shared, exclusive, or modified states. Reads from WB memory
can be speculative.

All writes that hit in the cache update the cache line and place the cache line in the modified state.
Writes that miss the cache allocate a new cache line and place the cache line in the modified state.
Writes to main memory only take place during writeback operations. Write buffering of WB
memory is allowed.

The WB memory type provides the highest-possible performance and is useful for most software
and data stored in system memory (DRAM).

Memory System [AMD PUb“C Use] 185

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 7-1 showsthe memory access ordering possible for each memory type supported by the AMD64
architecture. Table 7-3 on page 188 shows the ordering behavior of various operations on various
memory typesin greater detail. Table 7-2 on page 186 shows the caching policy for the same memory
types.

Table 7-1. Memory Access by Memory Type

Memory Access Memory Type
Allowed UC/CD wcC WP WT WB
Out-of-Order no yes yes yes yes
Read Speculative no yes yes yes yes
Reorder Before Write no yes yes yes yes
Out-of-Order no yes no no no
. Speculative no no no no no
Write .
Buffering no yes yes yes yes
Combining® no yes no yes yes
Note:
1. Write-combining buffers are separate fromwrite (store) buffers.

Table 7-2. Caching Policy by Memory Type

. . Memory Type
Caching Policy
uc CD wWC WP WT WB
Read Cacheable no no no yes yes yes
Write Cacheable no no no no yes yes
Read Allocate no no no yes yes yes
Write Allocate no no no no no yes
Write Hits Update Memory yes® yest yes® yes® yes no

Note:

1. For the L1 data cache and the L2 cache, if an access hits the cache, the cache line isinvalidated. If the cache lineisin the
modified state, thelineiswritten to main memory and then invalidated. For the L1 instruction cache, read (instruction fetch)
hits access the cache rather than main memory.

2. Thedataisnot cached, so a cache write hit cannot occur. However, memory is updated.
3. Write hits update memory and invalidate the cache line.

7.4.1 Instruction Fetching from Uncacheable Memory

Instruction fetches from an uncacheable memory type (including those for the CD type which don't hit
in theinstruction cache) may read a naturally-aligned block of memory no larger than an instruction
cache line that contains multiple instructions, and may or may not repeat reads of agiven block in the
course of extracting instructionsfromit. In general, the exact sequence of read accessesis not
deterministic, regardless of instruction stream contents, aside from the following constraints:

* instruction fetching of branch targets from uncacheable memory will only be done non-
speculatively

186

[AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» sequential instruction fetching will not transition speculatively from a cacheable memory type to
an uncacheable memory type

* sequential instruction fetching will not speculatively cross more than one 4K B page boundary

It isrecommended that MMIO devices that have read side-effects be separated from memory that's
subject to uncacheable instruction fetches by at least one 4KB page.

7.4.2 Memory Barrier Interaction with Memory Types

Memory types other than WB may allow weaker ordering in certain respects. When the ordering of
memory accesses to differing memory types must be strictly enforced, software can use the LFENCE,
MFENCE or SFENCE barrier instructions to force loads and stores to proceed in program order.
Table 7-3 on page 188 summarizes the cases where amemory barrier must be inserted between two
memory operations.

Thetableisread asfollows: the ROW isthe first memory operation in program order, followed by the
COLUMN, which isthe second memory operation in program order. Each cell represents the ordered
combination of the two memory operationsand thelettersa, b, ¢, d, e, f, g, h, i, J, k, and | within the cell
represent the applicable memory ordering rule for that combination. These symbols are described in
the footnotes below the table. In the table and footnotes, the abbreviation nt stands for non-temporal
(load or store), io stands for input / output, If for LFENCE, sf for SFENCE, and mf for MFENCE.

Memory System [AMD PUb“C Use] 187

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Table 7-3. Memory Access Ordering Rules
Second Memory Operation
) 7 2
g - | g S 5 | = 52
= ~ 5 = ~ £l S S B8 &
s S = H S 02 o S S <
First Memory Operation g = s s o g5 & J gy
E = 8 o @ 5| 8 8 5 2
8 - =) = - - S5
L oad (wp, wt, wh) a f b (If) C C c d d d
Load (uc) a f b (If) c c o d d d
Load (wc, wct) a f b (If) c c c d d d
Store (wp, wt, wb) e (mf) f e (mf) g g h (sf) d d d
Store (uc) [f i g g h (sf) d d d
Store (wc, we+, non-temporal) | e (mf) f e(mf) | j(sf) | g m | h(sf) d d d
L oad/Store (io) k k k k k I d, k d, k d, k
L ock (atomic) k k k k k k d, k d, k d, k
Serializeinstruction/
I nterrupts/Exceptions | I I I I I d.! d | d |

a — Aload (wp, wt, wb) may not pass a previous load (wp, wt, wh, wc, wc+, uc).

b — A load (wc, wct) may pass a previous load (wp, wt, wb, wc, wct). To ensure memory order, an
LFENCE instruction must be inserted between the two loads.

¢ — A store (wp, wt, wb, uc, wc, wc+, nt) may not pass a previous load (wp, wt, wb, uc, wc, wc+, nt).

d — All previous loads and stores complete to memory or 1/O space before a memory access for an 1/0,
locked or seriadizing instruction isissued.

e — Aload (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (wp, wt, wb, wc, wc+, nt).
To ensure memory order, an MFENCE instruction must be inserted between the store and the load.

f — Aload or store (uc) does not pass a previous load or store (wp, wt, wb, uc, wc, wc+, nt).

g — A store (wp, wt, wb, uc) does not pass a previous store (wp, wt, wb, uc).

h — A store (wc, wc+, nt) may pass a previous store (wp, wt, wb) or non-conflicting store (wc, wc+, nt).
To ensure memory order, an SFENCE instruction must be inserted between these two stores. A store
(wc, we+, nt) does not pass a previous conflicting store (wc, wc+, nt, uc).

i — A load (wp, wt, wh, wc, wc+) may pass a previous non-conflicting store (uc). To ensure memory

order, an MFENCE instruction must be inserted between the store and the load.

j — A store (wp, wt, wb) may pass a previous store (wc, wc+, nt). To ensure memory order, an SFENCE
instruction must be inserted between these two stores.

k — All loads and stores associated with the I/O and locked instructions complete to memory (no buffered
stores) before aload or store from a subsequent instruction is issued.

188

[AMD Public Use]

Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

| — All loads and stores complete to memory for the serializing instruction before the subsequent
instruction fetch is issued.

m— A store (uc) does not pass a previous store (wc, wc+).

7.5 Buffering and Combining Memory Writes

7.5.1 Write Buffering

Writesto memory (main memory and caches) can be stored internally by the processor in write buffers
(also known as store buffers) before actually writing the datainto amemory location. System
performance can be improved by buffering writes, as shown in the following examples:

* When higher-priority memory transactions, such as reads, compete for memory access with writes,
writes can be delayed in favor of reads, which minimizes or eliminates an instruction-execution
stall due to amemory-operand read.

* When the memory is busy, buffering writes while the memory is busy removes the writes from the
instruction-execution pipeline, which freesinstruction-execution resources.

The processor manages the write buffer so that it is transparent to software. Memory accesses check
the write buffer, and the processor completes writesinto memory from the buffer in program order.
Also, the processor completely empties the write buffer by writing the contents to memory as aresult
of performing any of the following operations:

* SFENCE Instruction—Executing a store-fence (SFENCE) instruction forces al memory writes
before the SFENCE (in program order) to be written into memory (or, for WB type, the cache)
before memory writes that follow the SFENCE instruction. The memory-fence (MFENCE)
instruction has asimilar effect, but it forces the ordering of loads in addition to stores.

» Serializing Instructions—Executing a serializing instruction forces the processor to retire the
serializing instruction (complete both instruction execution and result writeback) before the next
instruction isfetched from memory.

* 1/O instructions—Before completing an 1/O instruction, al previous reads and writes must be
written to memory, and the 1/0O instruction must complete before completing subsequent reads or
writes. Writesto |/O-address space (OUT instruction) are never buffered.

e Locked Instructions—A locked instruction (an instruction executed using the LOCK prefix) or an
XCHG instruction (which isimplicitly locked) must complete after all previous reads and writes
and before subsequent reads and writes. Locked writes are never buffered, although locked reads
and writes are cacheable.

* Interrupts and Exceptions—Interrupts and exceptions are serializing events that force the
processor to write al results from the write buffer to memory before fetching the first instruction
from the interrupt or exception service routine.

¢ UC Memory Reads—UC memory reads are not reordered ahead of writes.

Memory System [AMD PUb“C Use] 189

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Write buffers can behave similarly to write-combining buffers because multiple writes may be
collected internally before transferring the data to caches or main memory. See the following section
for a description of write combining.

7.5.2 Write Combining

Write-combining memory uses a different buffering scheme than write buffering described above.
Writes to write-combining (WC) memory can be combined internally by the processor in a buffer for
more efficient transfer to main memory at alater time. For example, 16 doubleword writesto
consecutive memory addresses can be combined in the WC buffers and transferred to main memory as
asingle burst operation rather than as individual memory writes.

The following instructions perform writesto WC memory:
« (V)MASKMOVDQU

+ MASKMOVQ

« (V)MOVNTDQ

« MOVNTI

« (V)MOVNTPD

« (V)MOVNTPS

« MOVNTQ
« MOVNTSD
« MOVNTSS

WC memory is not cacheable. A WC buffer writesits contents only to main memory.

The size and number of WC buffers available isimplementation dependent. The processor assigns an
addressrangeto an empty WC buffer when aWC-memory write occurs. The size and alignment of this
address rangeis equal to the buffer size. All subsequent writesto WC memory that fall within this
address range can be stored by the processor in the WC-buffer entry until an event occurs that causes
the processor to writethe WC buffer to main memory. After the WC buffer iswritten to main memory,
the processor can assign anew address range on a subsequent WC-memory write.

Writes to consecutive addressesin WC memory are not required for the processor to combine them.
The processor combines any WC memory write that falls within the active-address range for a buffer.
Multiple writes to the same address overwrite each other (in program order) until the WC buffer is
written to main memory.

Itispossiblefor writesto proceed out of program order when WC memory is used. For example, a
writeto cacheable memory that followsawriteto WC memory can be written into the cache before the
WC buffer iswritten to main memory. For thisreason, and the reasons|listed in the previous paragraph,
software that is sensitive to the order of memory writes should avoid using WC memory.

WC buffers are written to main memory under the same conditions as the write buffers, namely when:
» Executing a store-fence (SFENCE) instruction.

190 [AMD PUbllC Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Executing a seriaizing instruction.
* Executing an I/O instruction.
- Executing an MMIO access (load or store to UC memory type)
» Executing alocked instruction (an instruction executed using the LOCK prefix).
* Executing an XCHG instruction
* Aninterrupt or exception occurs.

WC buffers are also written to main memory when:

* A subsequent non-write-combining operation has a write address that matches the WC-buffer
active-address range.

* A write to WC memory falls outside the WC-buffer active-address range. The existing buffer
contents are written to main memory, and a new address range is established for the latest WC
write.

7.6 Memory Caches

The AMD64 architecture supports the use of internal and external caches. The size, organization,
coherency mechanism, and replacement algorithm for each cache isimplementation dependent.
Generally, the existence of the cachesistransparent to both application and system software. In some
cases, however, software can use cache-structure information to optimize memory accesses or manage
memory coherency. Such software can use the extended-feature functions of the CPUID instruction to
gather information on the caching subsystem supported by the processor. For more information, see
Section 3.3, “Processor Feature Identification,” on page 66.

7.6.1 Cache Organization and Operation

Although the detail ed organization of a processor cache depends on the implementation, the general
constructs are similar. L1 caches—data and instruction, or unified—and L2 caches usually are
implemented as n-way set-associative caches. Figure 7-3 on page 192 shows atypical logical
organization of an n-way set-associative cache. The physical implementation of the cache can be quite
different.

Memory System [AMD PUb“C Use] 191

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Way 0 Way 1 Way n-1
Tag Data Other Tag Data Other Tag Data Other
Set 0 ' ' ' '
Set 1
—E—> Set 2 Line Data 0,2 Line Data 1,2 Line Data n-1,2
Set 3 ' ' : !
Set m-1 : " Lo
Miss Miss \ Miss

R 1

Hit | [

5..:.'.'.'.'.'.'.'.'.'.'.'.'.'.'.*.& o Z

Hit Data

Physical Address

Tag Field + IndexField : Offset Field
| |

Figure 7-3. Cache Organization Example

Asshown in Figure 7-3, the cache is organized as an array of cache lines. Each cache line consists of
three parts. a cache-dataline (afixed-size copy of amemory block), atag, and other information.
Rows of cache linesin the cache array are sets, and columns of cache lines are ways. In an n-way set-
associative cache, each set isa collection of n lines. For example, in afour-way set-associative cache,
each set isacollection of four cache lines, one from each way.

192 [AMD PUb“C US@] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The cacheis accessed using the physical address of the data or instruction being referenced. To access
datawithin acache line, the physical addressis used to select the set, way, and byte from the cache.
Thisisaccomplished by dividing the physical addressinto the following threefields:

* Index—Theindex field selects the cache set (row) to be examined for a hit. All cache lines within
the set (one from each way) are selected by the index field.

» Tag—Thetag field is used to select a specific cache line from the cache set. The physical-address
tag field is compared with each cache-line tag in the set. If a match is found, a cache hit is
signalled, and the appropriate cache line is selected from the set. If a match is not found, a cache
mississignalled.

» Offset—The offset field points to the first byte in the cache line corresponding to the memory
reference. The referenced data or instruction value is read from (or written to, in the case of
memory writes) the selected cache line starting at the location selected by the offset field.

In Figure 7-3 on page 192, the physical-address index field is shown selecting Set 2 from the cache.
Thetag entry for each cache line in the set is compared with the physical-address tag field. The tag
entry for Way 1 matches the physical-addresstag field, so the cache-line datafor Set 2, Way 1is
selected using the n:1 multiplexor. Finally, the physical-address offset field is used to point to the first
byte of the referenced data (or instruction) in the selected cacheline.

Cache lines can contain other information in addition to the data and tags, as shown in Figure 7-3 on
page 192. MOESI state and the state bits associated with the cache-replacement algorithm are typical
pieces of information kept with the cache line. Instruction caches can also contain pre-decode or
branch-prediction information. The type of information stored with the cache line isimplementation
dependent.

Self-Modifying Code. Softwarethat storesinto its own pending instruction stream with the intent of
then executing the modified instructionsis classified as self-modifying code. To support self-
modifying code, AM D64 processorswill flush any linesfrom the instruction cache that such stores hit,
and will additionally check whether an instruction being modified is aready in decode or execution
behind the store instruction. If so, it will flush the pipeline and restart instruction fetch to acquire and
re-decode the updated instruction bytes. No special action is needed by software for such updates to
be immediately recognized. Aswith cache coherency, the check for instructionsthat arein flight is
performed using physical addressesto avoid aliasing issues that could arise with virtual (linear)
addresses.

When the modified bytes are in cacheable memory, the data cache may retain a copy of the modified
cachelinein ashared state, and the instruction cache refill may be satisfied from any suitable placein
the memory hierarchy in amodel-dependent manner that maintains cache coherency.

Cross-Modifying Code. Software that storesinto the active instruction stream of another executing
thread with the intent that the other thread subsequently execute the modified instruction streamis
classified as cross-modifying code. There are two approaches to consider: asynchronous modification
and synchronous modification.

Memory System [AMD PUb“C Use] 193

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Asynchronous modification. Thisisdone with awrite to the target instruction stream with no
particular coordination being done between the writing and receiving threads. The nature of the code
being executed by the target thread is such that it isinsensitive to the exact timing of the update, for
example executing in aknown loop until an update to a branch instruction's offset takes it down anew
path (or an update to an immediate operand, or opcode, or other instruction field). Such modifications
must be done viaasingle storeto the target thread's instruction stream that is contained entirely within
anaturally-aligned quadword, and is subject to the constraints given here. A key aspect isthat,
although the store is performed atomically, the affected quadword may be read more than oncein the
process of extracting instruction bytesfrom it. Thiscan result in the following scenarios resulting from
asingle store:

1. Anupdate to two successiveinstructions, A and B, to A" and B' may result in execution of an A-B'
sequence rather than A'-B'. However it will not result in an A'-B sequence since stores become
visible to instruction fetchers in program order, and instruction fetchers read memory sequentially
between taken branches.

2. A modification to one instruction A that changes it to two instructions A'-B will only result in
execution of A'-B.

3. A modification to two instructions A-B that combines them into one instruction A may result in a
sequence of A-X, where X starts at the point in A" where B previously started.

Note that since storesto the instruction stream are observed by the instruction fetcher in program
order, one can do multiple modifications to an area of the target thread's code that is beyond reach of
thethread's current control flow, followed by afinal asynchronous update that atersthe control flow to
expose the modified code to fetching and execution.

If the desired action cannot be achieved within these constraints, a synchronous modification approach
must be used for reliable operation.

Synchronous modification. Thisentailsaproducer-consumer approach to the modification, where
the target thread waits on asignal from the modifying thread, such as changing the state of a shared
variable, before executing the modified code. The modifying thread writes to the target instruction
bytesin any desired manner, then writes the synchronizing variable to rel ease the target thread. Upon
release, the target thread must then execute a serializing instruction such as CPUID or MFENCE (a
locked operation is not sufficient) before proceeding to the modified code to avoid executing astale
view of the instructions which may have been speculatively fetched. Note that such speculative
fetching isafunction of branch predictor operation which is completely beyond the control of
software.

See Volume 1, Chapter 3, “ Semaphores,” for adiscussion of instructionsthat are useful for
interprocessor synchronization.

7.6.2 Cache Control Mechanisms

The AMDG64 architecture provides a number of mechanismsfor controlling the cacheability of
memory. These are described in the following sections.

194 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Cache Disable. Bit 30 of the CRO register isthe cache-disable bit, CR0.CD. Caching is enabled
when CRO.CD iscleared to 0, and caching is disabled when CRO.CD isset to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid data (or instructions). If aread or write
hitsthe L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:

1. Writesthe cacheline back if it isin the modified or owned state.
2. Invalidatesthe cacheline.
3. Performs a non-cacheable main-memory access to read or write the data.

If aninstruction fetch hitsthe L 1 instruction cache when CR0.CD=1, some processor models may read
the cached instructions rather than access main memory. When CR0.CD=1, the exact behavior of L2
and L 3 caches is model-dependent, and may vary for different types of memory accesses.

The processor a so responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-lineinvalidation) is performed only if the probeis
performed on behalf of amemory write or an exclusive read.

Writethrough Disable. Bit 29 of the CRO register isthe not writethrough disable bit, CRO.NW. In
early x86 processors, CRO.NW is used to control cache writethrough behavior, and the combination of
CRO.NW and CRO0.CD determines the cache operating mode.

In early x86 processors, clearing CRO.NW to 0 enables writeback caching for main memory,
effectively disabling writethrough caching for main memory. When CRO.NW=0, software can disable
writeback caching for specific memory pages or regions by using other cache control mechanisms.
When software sets CRO.NW to 1, writeback caching is disabled for main memory, while
writethrough caching is enabled.

In implementations of the AMD64 architecture, CRO.NW is not used to qualify the cache operating
mode established by CRO.CD. Table 7-4 shows the effects of CRO.NW and CR0.CD on the AMD64
architecture cache-operating modes.

Table 7-4. AMDG64 Architecture Cache-Operating Modes

CRO.CD CRO.NW Cache Operating Mode
0 0 Cache enabled with awriteback-caching policy.
0 1 Invalid setting—causes a general -protection exception (#GP).
1 0
I I Cache disabled. See “Cache Disable” on page 195.

Page-Level Cache Disable. Bit 4 of all paging data-structure entries controls page-level cache
disable (PCD). When a data-structure-entry PCD bit is cleared to O, the page table or physical page
pointed to by that entry is cacheable, as determined by the CRO.CD bit. When the PCD bitissetto 1,
the page table or physical pageisnot cacheable. The PCD bit in the paging data-structure base-register

Memory System [AMD PUb“C Use] 195

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

(bit 4 in CR3) controlsthe cacheability of the highest-level page tablein the page-trandation
hierarchy.

Page-Level Writethrough Enable. Bit 3 of al paging data-structure entriesis the page-level
writethrough enable control (PWT). When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has awriteback caching policy. When the PWT bit is set
to 1, the page table or physical page has awritethrough caching policy. The PWT bit in the paging
data-structure base-register (bit 3in CR3) controlsthe caching policy of the highest-level pagetablein
the page-trandlation hierarchy.

The corresponding PCD bit must be cleared to O (page caching enabled) for the PWT bit to have an
effect.

Memory Typing. Two mechanisms are provided for software to control access to and cacheability of

specific memory regions:

» The memory-type range registers (MTRRS) control cacheability based on physical addresses. See
“MTRRS’ on page 201 for more information on the use of MTRRs.

» The page-attribute table (PAT) mechanism controls cacheability based on virtual addresses. PAT
extends the capabilities provided by the PCD and PWT page-level cache controls. See “Page-
Attribute Table Mechanism” on page 210 for more information on the use of the PAT mechanism.

System software can combine the use of both the MTRRs and PAT mechani sms to maximize control
over memory cacheability.

If the MTRRs are disabled in implementations that support the M TRR mechanism, the default
memory typeis set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CRO.CD to 0. Cacheable memory types must be established using the MTRRs N
order for memory accesses to be cached.

Cache Control Precedence. The cache-control mechanismsare used to define the memory type and
cacheability of main memory and regions of main memory. Taken together, the most restrictive
memory type takes precedence in defining the caching policy of memory. The order of precedenceis:

Uncacheable (UC)
Write-combining (WC)
Write-protected (WP)
Writethrough (WT)
Writeback (WB)

o ~ N BRF

For example, assume alarge memory region is designated a writethrough type using the MTRRs.
Individual pages within that region can have caching disabled by setting the appropriate page-table
PCD bits. However, no pages within that region can have awriteback caching policy, regardless of the
page-table PWT values.

196 [AMD PUbllC Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

7.6.3 Cache and Memory Management Instructions

Data Prefetch. The prefetch instructions are used by software as a hint to the processor that the
referenced dataislikely to be used in the near future. The processor can preload the cacheline
containing the datain anticipation of its use. PREFETCH provides a hint that the datais to be read.
PREFETCHW provides a hint that the dataisto be written. The processor can mark the line as
modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructionsare provided for softwareto enforce memory ordering (serialization)
in weakly-ordered memory types. These instructions are:

* SFENCE (store fence)—forces al memory writes (stores) preceding the SFENCE (in program
order) to be written into memory before memory writes following the SFENCE.

e« LFENCE (load fence)—forces all memory reads (loads) preceding the LFENCE (in program
order) to be read from memory before memory reads following the LFENCE.

« MFENCE (memory fence)—forces all memory accesses (reads and writes) preceding the
MFENCE (in program order) to be written into or read from memory before memory accesses
following the MFENCE.

Cache Line Writeback and Flush. The CLFLUSH instruction (writeback, if modified, and
invalidate) takes the byte memory-address operand (alinear address), and checksto seeif the address
is cached. If the addressis cached, the entire cache line containing the addressisinvalidated. If any
portion of the cache lineisdirty (in the modified or owned state), the entire line iswritten to main
memory beforeit isinvalidated. CLFLUSH affectsall cachesin the memory hierarchy—internal and
external to the processor, and across al cores. The CLWB instruction operatesin the same manner
except it does not invalidate the cache line. The checking and invalidation process continues until the
address has been updated in memory and, for CLFLUSH, invalidated in all caches.

In most cases, the underlying memory type assigned to the address has no effect on the behavior of this
instruction. However, when the underlying memory type for the addressis UC or WC (as defined by
the MTRRS), the processor does not proceed with checking all cachesto seeif the addressiscached. In
both cases, the addressis uncacheabl e, and invalidation is unnecessary. Write-combining buffers are
written back to memory if the corresponding physical address falls within the buffer active-address
range.

Cache Writeback and Invalidate. Unlikethe CLFLUSH and CLWB instructions, the WBINVD and
WBNOINVD instructions operate on the entire cache, rather than asingle cache line. The WBINVD
and WBNOINVD instructionsfirst write back all cache linesthat are dirty (in the modified or owned
state) to main memory. After writeback is complete, the WBINVD instruction additionally invalidates
all cachelines. The checking and invalidation process continues until all internal cachesin the
executing core's path to system memory are invalidated. In some implementations this may include
cachesin other branches of the system's cache hierarchy; see the description of these instructionsin
volume 3 for more detail. For either instruction, aspecial bus cycleistransmitted to higher-level
external caches directing them to perform awriteback-and-invalidate operation.

Memory System [AMD PUb“C Use] 197

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Cache Invalidate. TheINVD instruction isused to invalidate all cachelines. Unlikethe WBINVD
instruction, dirty cache lines are not written to main memory. The process continues until al internal
caches have been invalidated. A special bus cycle istransmitted to higher-level external caches
directing them to perform an invalidation.

The INVD instruction should only be used in situations where memory coherency is not required.

7.6.4 Serializing Instructions

Serializing instructions force the processor to retire the serializing instruction and all previous
instructions before the next instruction isfetched. A serializing instruction is retired when the
following operations are complete:

* Theinstruction has executed.

» All registers modified by the instruction are updated.

* All memory updates performed by the instruction are compl ete.

* All dataheld in the write buffers have been written to memory.

Serializing instructions can be used as a barrier between memory accesses to force strong ordering of
memory operations. Care should be exercised in using serializing instructions because they modify
processor state and may affect program flow. Theinstructions also force execution serialization, which
can significantly degrade performance. When strongly-ordered memory accesses are required, but

execution serialization isnot, it is recommended that software use the memory-ordering instructions
described on page 197.

Thefollowing are serializing instructions:

* Non-Privileged Instructions
- CPUID
- IRET
- RSM
- MFENCE
e Privileged Instructions
- MOV CRn
- MOV DRn
- LGDT,LIDT,LLDT,LTR
- SWAPGS
- WRMSR
- WBINVD, WBNOINVD, INVD
- INVLPG

198 [AMD PUbllC Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

7.6.5 Cache and Processor Topology

Cache and processor topology information is useful in the optimal management of system and
application resources. Exposing processor and cache topology information to the programmer alows
software to make more efficient use of hardware multithreading resources delivering optimal
performance. Shared resources in a specific cache and processor topology may require special
consideration in the optimization of multiprocessing software performance.

The processor topology allows software to determine which cores or logical processorsare siblingsin
acompute unit, node, and processor package. For example, a scheduler can then choose to either
compact or scatter threads (or processes) to coresin compute units, nodes, or across the coresin the
entire physical package in order to optimize for a power and performance profile.

Topology extensions define processor topology at both the node, compute unit and cache level.
Topology extensionsinclude cache properties with sharing and the processor topology identified. The
result isasimplified extension to the CPUID instruction that describes the processors cache topology
and leverages existing industry cache propertiesfolded into AMD’ s topology extension description.

Topology extensions definition supports existing and future processors with varying degrees of cache
level sharing. Topology extensions also support the description of asimple compute unit with one core
or packages where the number of coresin anode and/or compute unit are not an even power of two.

CPUID Function 8000 _001D: Cache Topology Definition. CPUID Function 8000 001D describes
the hierarchical relationships of cache levelsrelative to the cores which share these resources.
Function 8000_001D is defined to be called iteratively with the value 8000001Dh in EAX and an
additional parameter in ECX. To gather information for all cache levels, software must call CPUID
with 8000001Dhin EAX and ECX set to increasing values beginning with O until avalueof Ois
returned from EAX[4:0], which indicates no more cache descriptions.

If software dynamically manages cache configuration, it will need to update any stored cache
properties for the processor.

CPUID Function 8000 _001E: Processor Topology Definition. CPUID Function 8000_001E
describes processor topology with component identifiers. To read the processor topology, definition
software calls the CPUID instruction with the value 8000001Eh in EAX. After execution the APIC ID
isrepresented in EAX. EBX contains the compute unit description in the processor, while ECX
contains system unique node identification. Software may read this information once for each core.

Thefollowing CPUID functions provide information about processor topol ogy:
» CPUID Fn8000_0001 ECX

» CPUID Fn8000_0008 ECX

« CPUID Fn8000 001D _EAX, EBX, ECX, EDX

e CPUID Fn8000 001E EAX, EBX, ECX

For more information using the CPUID instruction, see Section 3.3, “Processor Feature
Identification,” on page 66.

Memory System [AMD PUb“C Use] 199

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

7.7 Memory-Type Range Registers

The AM D64 architecture supports three mechanisms for software access-control and cacheability-
control over memory regions. These mechanisms can be used in place of similar capabilities provided
by external chipsets used with early x86 processors.

This section describes a control mechanism that uses a set of programmable model-specific registers
(MSRs) called the memory-type-range registers (MTRRS). The MTRR mechanism provides system
software with the ability to manage hardware-device memory mapping. System software can
characterize physical-memory regions by type (e.g., ROM, flash, memory-mapped I/O) and assign
hardware devices to the appropriate physical-memory type.

Another control mechanism isimplemented as an extension to the page-translation capability and is
called the page attribute table (PAT). It is described in “ Page-Attribute Table Mechanism” on

page 210. Likethe MTRRs, PAT provides system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can characterize physical pages and assign
virtually-mapped devices to those physical pages using the page-translation mechanism. PAT may be
used in conjunction with the MTTR mechanism to maximize flexibility in memory control.

Finally, control mechanisms are provided for managing memory-mapped 1/0. These mechanisms
employ extensionsto the MTRRs and a separate feature called the top-of-memory registers. The
MTRR extensionsinclude additional MTRR type-field encodings for fixed-range MTRRs and
variable-range 1/0 range registers (IORRs). These mechanisms are described in “Memory-Mapped
[/O” on page 214.

7.7.1 MTRR Type Fields

The MTRR mechanism provides ameansfor associ ating a physical-address range with amemory type
(see“Memory Types’ on page 184). The MTRRs contain atypefield used to specify the memory type
in effect for a given physical-address range.

There are two variants of the memory type-field encodings. standard and extended. Both the standard
and extended encodings use type-field bits 2:0 to specify the memory type. For the standard
encodings, bits 7:3 are reserved and must be zero. For the extended encodings, bits 7:5 are reserved,
but bits 4:3 are defined as the RdMem and WrMem bits. “ Extended Fixed-Range MTRR Type-Field
Encodings’ on page 215 describes the function of these extended bits and how software enables them.
Only the fixed-range M TRRs support the extended type-field encodings. Variable-range MTRRs use
the standard encodings.

Table 7-5 on page 201 shows the memory types supported by the MTRR mechanism and their
encoding in the MTRR type fields referenced throughout this section. Unless the extended type-field
encodings are explicitly enabled, the processor uses the type values shown in Table 7-5.

200 [AMD PUbllC Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 7-5. MTRR Type Field Encodings
Type Value Type Name Type Description
All accesses are uncacheable. Write combining is not

00h UC—Uncacheable allowed. Speculative accesses are not allowed
. - All accesses are uncacheable. Write combining is allowed.

Oth WC—Write-Combining Speculative reads are allowed

Reads allocate cache lines on a cache miss. Cache lines are
04h WT—Writethrough not allocated on awrite miss. Write hits update the cache and

main memory.

Reads allocate cache lines on a cache miss. All writes update
05h WP—Write-Protect main memory. Cache lines are not allocated on awrite miss.

Write hits invalidate the cache line and update main memory.

Reads all ocate cache lines on acache miss, and can allocate to
06h WB—Writeback either the shared, exclusive, or modified state. Writes allocate
to the modified state on a cache miss.

If the MTRRs are disabled in implementations that support the M TRR mechanism, the default
memory typeis set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CRO.CD to 0. Cacheable memory types must be established using the MTRRsto
enable memory accesses to be cached.

7.7.2 MTRRs

Both fixed-size and variable-size address ranges are supported by the MTRR mechanism. The fixed-
sizeranges are restricted to the lower 1 Mbyte of physical-address space, while the variable-size
ranges can be located anywhere in the physi cal-address space.

Figure 7-4 on page 202 shows an example mapping of physical memory using the fixed-size and
variable-size MTRRs. The areas shaded gray are not mapped by the MTRRs. Unmapped areas are set
to the software-sel ected default memory type.

Memory System [AMD PUb“C Use] 201

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Physical Memory

O_FFFF_FFFF_FFFFh

— Default (Unmapped) Ranges

Up to 8 Variable Ranges

10_0000h
64 4-Kbyte Ranges —>» 256 Kbytes OF_FFFFh

16 16-Kbyte Ranges ——»{ 226 Kbytes

8 64-Kbyte Ranges —»| 512 Kbytes

00_0000h

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are read using the RDM SR instruction and
written using the WRM SR instruction. See “Memory-Typing MSRS” on page 638 for alisting of the
MTRR M SR numbers. The following sections describe the types of MTRRs and their function.

Fixed-Range MTRRs. Thefixed-range M TRRs are used to characterize thefirst 1 Mbyte of physical
memory. Each fixed-range MTRR contains eight type fieldsfor characterizing atotal of eight memory
ranges. Fixed-range MTRRs support extended type-field encodings as described in “ Extended Fixed-
Range MTRR Type-Field Encodings’ on page 215. The extended type field allows afixed-range
MTRR to be used as afixed-range IORR. Figure 7-5 on page 203 shows the format of afixed-range
MTRR.

202

[AMD PUb“C Use] Memory System

AMDA

24593—Rev. 3.36—O0October 2020

63

56 55

48 47

AMDG64 Technology

39 32

Type

Type

Type

Type

31

24 23

16 15

Type

Type

Type

Type

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte of physical memory is segmented into
atotal of 88 non-overlapping memory ranges, asfollows:

» The 512 Kbytes of memory spanning addresses 00_0000h to 07 _FFFFh are segmented into eight
64-Kbyteranges. A single MTRR is used to characterize this address space.

* The 256 Kbytes of memory spanning addresses 08_0000h to OB_FFFFh are segmented into 16 16-

Kbyte ranges. Two MTRRs are used to characterize this address space.

* The 256 Kbytes of memory spanning addresses 0C_0000h to OF FFFFh are segmented into 64 4-

Kbyte ranges. Eight MTRRs are used to characterize this address space.

Table 7-6 shows the address ranges corresponding to the type fields within each fixed-range MTRR.
The gray-shaded heading boxes represent the bit ranges for each typefield in afixed-range MTTR.
See Table 7-5 on page 201 for the type-field encodings.

Table 7-6. Fixed-Range MTRR Address Ranges

Physical Address Range (in hexadecimal)

6356 | 5548 | 4740 | 3932 | 3124 | 2316 | 158 | 70 Register Name

FFE | |FerE |reee |rRE |Ree |FPeE |FREE |peer | MTRRIiXG4K_00000
PR |BFFF | |TReE |aFRE |RRR |BRFE (7R |apee | MTRRIixIsK 80000
SFIPF |BFPF |TFFP|SFFE |AFFFR |ABRFF |ATFRF |Agtrr | MTRRIxLOK_AGGOO
wer |oFe |sFee |aFre |aFr |2eee |wee |orpe | MTRRfxeK_Coo0o
CFFFF |CEFPF |COFFE |COFRF |CBRFF |CAFPRF |ompe |arpe | MTRRTixeK_C8000
OTPFF |DORFE |DSPFR |DaFFF |DaFPF |D2FPF |Dee |porer | MTRRINAK_DO0GO
OFFFF |DEFPF |DDFFF |DCFPF |DBFPF |DAFPF |Dorer |perre | MTRRIixdK_D8ooo
er |GrFe SR |aFeR |aree |2 |1 |oree | MTRRXeK_EQ000

Memory System

[AMD Public Use]

203

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 7-6. Fixed-Range MTRR Address Ranges (continued)

Physical Address Range (in hexadecimal)
63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

EFO00—E | EEO00—E | EDO0O— | ECO00— |EBOOO— | EAOOO- | E9000—E | EB000-E
FFFF |EFFF |EDFFF |ECFFF |EBFFF |EAFFF |9FFF |8FFF

F7000—F | F6000—F | F5000—F | F4000—F |F3000—F | F2000—F |F1000—F | FOO00—F
7FFF |6FFF |SFFF |4FFF |3FFF [2FFF |1FFF |OFFF

FFO00—F | FEOOO-F | FDOOO—F | FCO00—F | FBOOO—F | FAOOO-F | F9000-F | F8000—F
FFFF |EFFF |DFFF |CFFF |BFFF |AFFF |9FFF |8FFF

Register Name

M TRRfix4K_E8000

M TRRfix4K _F0000

M TRRfix4K_F8000

Variable-Range MTRRs. Thevariable-range M TRRs can be used to characterize any addressrange
within the physical-memory space, including all of physical memory. Up to eight address ranges of
varying sizes can be characterized using the MTRR. Two variable-range MTRRs are used to
characterize each address range: MTRRphysBasen and MTRRphysMaskn (n is the address-range
number from 0 to 7). For example, address-range 3 is characterized using the M TRRphysBase3 and
MTRRphysMask3 register pair.

Figure 7-6 showsthe format of the M TRRphysBasen register and Figure 7-7 on page 205 shows the
format of the M TRRphysMaskn register. The fields within the register pair are read/write.

MTRRphysBasen Registers. Thefieldsinthese variable-range MTRRs, shown in Figure 7-6, are:

* Type—Bits 7:0. The memory type used to characterize the memory range. See Table 7-5 on
page 201 for the type-field encodings. Variable-range MTRRs do not support the extended type-
field encodings.

* Range Physical Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMDG64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 hits.

204 [AMD PUb“C Use] Memory System

AMDA

24593—Rev. 3.36—O0October 2020

AMDG64 Technology

63 52 51 32
Reserved, MBZ PhysBase[51:32]
31 12 11 8 7 0
PhysBase[31:12] Reserved, MBZ Type

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:12 PhysBase Range Physical Base Address R/W

11:8 Reserved Reserved, Must be Zero

7:0 Type Default Memory Type R/W

Figure 7-6. MTRRphysBasen Register

MTRRphysMaskn Registers. Thefieldsin thesevariable-range MTRRS, shown in Figure 7-7, are:
* Valid (V)—Bit 11. Indicatesthat the MTRR pair isvalid (enabled) when set to 1. When the valid bit

iscleared to O the register pair is not used.

* Range Physical Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-K byte physical-address boundary. Bits 11:0 of

PhysMask are assumed to be O.
63 52 51 32
Reserved, MBZ PhysMask[51:32]
31 12 11 10 0
PhysMask[31:12] \% Reserved, MBZ

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:12 PhysMask Range Physical Mask R/W

1 \Y, MTRR Pair Enable (Valid) R/W

10:0 Reserved Reserved, Must be Zero

Figure 7-7.

MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine whether atarget physical-addressfallswithin
the specified address range. PhysMask islogically ANDed with PhysBase and separately ANDed with
the upper 40 bits of the target physical-address. If the results of the two operations are identical, the

target physical-address falls within the specified memory range. The pseudo-code for the operationis:

Memory System

[AMD Public Use]

205

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

MaskBase = PhysMask AND PhysBase
MaskTar get = PhysMask AND Tar get _Address[51: 12]
| F MaskBase == MaskTar get
target address is in range
ELSE
target address is not in range

Variable Range Size and Alignment. Thesize and alignment of variable memory-ranges (MTRRS)
and 1/0 ranges (IORRs) arerestricted asfollows:

* Theboundary on which avariable range is aligned must be equal to the range size. For example, a
memory range of 16 Mbytes must be aligned on a 16-Mbyte boundary.

« Therange size must be apower of 2 (2", 52 > n > 11), with aminimum allowable size of 4 Kbytes.
For example, 4 Mbytes and 8 Mbytes are allowable memory range sizes, but 6 Mbytes is not
alowable.

PhysMask and PhysBase Values. Software can calculate the PhysMask value using the following
procedure:

1. Subtract the memory-range physical base-address from the upper physical-address of the memory
range.

2. Subtract the value calculated in Step 1 from the physical memory size.

3. Truncate the lower 12 bits of the result in Step 2 to create the PhysMask value to be loaded into
the MTRRphysMaskn register. Truncation is performed by right-shifting the value 12 bits.

For example, assume a 32-Mbyte memory range is specified within the 52-bit physical address space,
starting at address 200_0000h. The upper address of the range is 3FF_FFFFh. Following the process
outlined aboveyields:

1. 3FF_FFFFh-200_0000h = 1FF_FFFFh
2. F_FFFF_FFFF_FFFF—1FF_FFFFh=F_FFFF_FEOO_0000h
3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_EQ00h

In this example, the 40-bit value loaded into the PhysMask field is FF_FFFF_EOQOh.

Software must also truncate the lower 12 bits of the physical base-address before loading it into the
PhysBasefield. In the example above, the 40-bit PhysBase field is00_0000_2000h.

Default-Range MTRRs. Physical addressesthat are not within ranges established by fixed-range and
variable-range M TRRs are set to adefault memory-type using the M TRRdef Type register. The format
of thisregister isshownin Figure 7-8.

206 [AMD PUbllC Use] Memory System

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
63 32
Reserved, MBZ
31 12 11 10 9 8 7 0
F | Res,
Reserved, MBZ E E| MBZ Type
Bits Mnemonic Description R/W
63:12 Reserved Reserved, Must be Zero
11 E MTRR Enable RIW
10 FE Fixed Range Enable R/W
9:8 Reserved Reserved, Must be Zero
7:0 Type Default Memory Type R/W

Figure 7-8. MTRRdefType Register Format

Thefields within the M TRRdef Type register are read/write. These fields are:

» Type—Bits 7:0. The default memory-type used to characterize physical-memory space. See
Table 7-5 on page 201 for the type-field encodings. The extended type-field encodings are not
supported by this register.

» Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are enabled when FE is set to 1.
Clearing FE to 0 disables all fixed-range MTRRs. Setting and clearing FE has no effect on the
variable-range MTRRs. The FE bit has no effect unlessthe E bit is set to 1 (see below).

* MTRR Enable (E)—Bit 11. This is the MTRR memory typing enable bit. The memory typing
capabilities of all fixed-range and variable-range MTRRs are enabled when E is set to 1. Clearing
E to O disables the memory typing capabilities of all fixed-range and variable-range MTRRs and
sets the default memory-type to uncacheable (UC) regardless of the value of the Type field. This
bit does not affect the operation of the RdMem and WrMem fields.

7.7.3 Using MTRRs

Identifying MTRR Features. Software determineswhether a processor supportsthe MTRR
mechanism by executing the CPUID instruction with either function 0000_0001h or function
8000_0001h. If MTRRs are supported, bit 12 inthe EDX register isset to 1 by CPUID. See* Processor
Feature Identification” on page 66 for more information on the CPUID instruction.

The MTRR capability register (MTRRcap) isaread-only register containing information describing
thelevel of MTRR support provided by the processor. Figure 7-9 showsthe format of thisregister. If
MTRRs are supported, software can read MTRRcap using the RDM SR instruction. Attempting to
write to the M TRRcap register causes a general-protection exception (#GP).

Memory System [AMD PUbllC Use] 207

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 32
Reserved
31 11 10 9 8 7 0

W R|F
Reserved el VCNT
C
s | X
Bits Mnemonic Description R/W
63:11 Reserved Reserved
10 wC Write Combining R
9 Reserved Reserved
8 FIX Fixed-Range Registers R
7:0 VCNT Variable-Range Register Count R

Figure 7-9. MTRR Capability Register Format

The MTRRcap register field are:

7.7

Variable-Range Register Count (VCNT)—Bits 7:0. The VCNT field contains the number of
variable-range register pairs supported by the processor. For example, a processor supporting eight
register pairsreturnsa08h in thisfield.

Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicateswhether or not the fixed-range registers
are supported. If the processor returnsa 1 in this bit, all fixed-range registers are supported. If the
processor returns a0 in this bit, no fixed-range registers are supported.

Write-Combining (WC)—Bit 10. The WC bit indicates whether or not the write-combining
memory type is supported. If the processor returns a 1 in this bit, WC memory is supported,
otherwiseit is not supported.

.4 MTRRs and Page Cache Controls

When paging and the M TRRs are both enabled, the address ranges defined by the MTRR registers can
span multiple pages, each of which can characterize memory with different types (using the PCD and
PWT page bits). When caching is enabled (CR0.CD=0 and CR0.NW=0), the effective memory typeis
determined asfollows:

1

If the page is defined as cacheable and writeback (PCD=0 and PWT=0), then the MTRR defines
the effective memory-type.

2. |If the pageis defined as not cacheable (PCD=1), then UC is the effective memory-type.
3. If the page is defined as cacheable and writethrough (PCD=0 and PWT=1), then the MTRR

defines the effective memory-type unless the MTRR specifies WB memory, in which case WT is
the effective memory-type.

208

[AMD PUb“C Use] Memory System

AMDA
AMDG64 Technology

24593—Rev. 3.36—O0ctober 2020
Table 7-7 liststhe MTRR and page-level cache-control combinations and their combined effect on the
final memory-type, if the PAT register holds the default settings.

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR

MTRR Page Page Effective
Memory Type PCD Bit PWT Bit Memory-Type
uc — — uc

0 — wWC
wC 1 0 wct
1 1 uc
0 — WP
WP
1 — ucC
0 — WT
WT
1 — uc
0 0 WB
WB 0 1 WT
1 — ucC
Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and an MTRR
WC memory type is implementation dependent.

Large Page Sizes. When paging is enabled, software can use large page sizes (2 Mbytes and

4 Mbytes) in addition to the more typical 4-Kbyte page size. When large page sizesare used, it is
possible for multiple MTRRs to span the memory range within asingle large page. Each MTRR can
characterize the regions within the page with different memory types. If this occurs, the effective
memory-type used by the processor within the large page is undefined.

Software can avoid the undefined behavior in one of the following ways:
* Avoid using multiple MTRRsto characterize asingle large page.
* Usemultiple 4-Kbyte pages rather than asingle large page.

« If multiple MTRRs must be used within asinglelarge page, software can set the MTRR typefields
to the same value.

« If the multiple MTRRs must have different type-field values, software can set the large page PCD
and PWT bitsto the most restrictive memory type defined by the multiple MTRRSs.

Overlapping MTRR Registers. If the address ranges of two or more MTRRs overlap, the following

rules are applied to determine the memory type used to characterize the overlapping address range:

1. Fixed-range MTRRs, which characterize only the first 1 Mbyte of physica memory, have
precedence over variable-range MTRRSs.

2. If two or more variable-range MTRRs overlap, the following rules apply:

Memory System

[AMD Public Use] 20

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

If the memory types are identical, then that memory typeis used.
b. If a least one of the memory typesis UC, the UC memory typeis used.

c. If at least one of the memory types is WT, and the only other memory type is WB, then the
WT memory typeis used.

d. If the combination of memory typesis not listed Steps A through C immediately above, then
the memory type used is undefined.

7.7.5 MTRRs in Multi-Processing Environments

In multi-processing environments, the MTRRs located in all processors must characterize memory in
the same way. Generally, this means that identical values are written to the MTRRs used by the
processors. This also meansthat values CRO.CD and the PAT must be consistent across processors.
Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR settings in other processors to ensure consistency. It isthe responsibility of
system softwareto initialize and maintain MTRR consistency across all processors.

7.8 Page-Attribute Table Mechanism

The page-attribute table (PAT) mechanism extends the page-table entry format and enhances the
capabilities provided by the PCD and PWT page-level cache controls. PAT (and PCD, PWT) alow
memory-type characterization based on the virtual (linear) address. The PAT mechanism providesthe
same memory-typing capabilities asthe MTRRs but with the added flexibility of the paging
mechanism. Software can use both the PAT and MTRR mechanisms to maximize flexibility in
memory-type control.

7.8.1 PAT Register

Likethe MTRRs, the PAT register is a 64-bit model-specific register (MSR). The format of the PAT
registersis shown in Figure 7-10. See “Memory-Typing MSRs’ on page 638 for more information on
the PAT M SR number and reset value.

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

Reserved PA7 Reserved PA6 Reserved PAS Reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PAO

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields, numbered from PAO to PA7. The PA fields
hold the encoding of amemory type, asfound in Table 7-8 on page 211. The PAT type-encodings

210

[AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

match the M TRR type-encodings, with the exception that PAT adds the 07h encoding. The 07h
encoding correspondsto aUC— type. The UC— type (07h) isidentical to the UC type (00h) except it
can be overridden by an MTRR type of WC.

Software can write any supported memory-type encoding into any of the eight PA fields. An attempt to
write anything but zerosinto the reserved fields causes a general-protection exception (#GP). An
attempt to write an unsupported type encoding into a PA field al so causes a#GP exception.

The PAT register fields are initiated at processor reset to the default values shown in Table 7-9 on
page 212.

Table 7-8. PAT Type Encodings

Type Value Type Name Type Description
All accesses are uncacheable. Write combining is not allowed. Speculative

00h UC—Uncacheable | - occes are not all owedl
o1h WC—Write-Combining All accesses are uncacheable. Write combining is allowed. Speculative
reads are allowed.
Reads allocate cache lines on a cache miss, but only to the shared state.
04h WT—Writethrough | Cache lines are not allocated on awrite miss. Write hits update the cache

and main memory.

Reads allocate cache lines on a cache miss, but only to the shared state. All
05h WP—Write-Protect | writes update main memory. Cache lines are not allocated on awrite miss.
Write hits invalidate the cache line and update main memory.

Reads allocate cache lines on a cache miss, and can allocate to either the

06h WB—Writeback shared or exclusive state. Writes allocate to the modified state on a cache
miss.
UC— All accesses are uncacheable. Write combining is not allowed. Speculative
07h . accesses are not allowed. Can be overridden by an MTRR with the WC
(UC minus) type

7.8.2 PAT Indexing

PA fieldsin the PAT register are selected using three bits from the page-table entries. These bits are:

* PAT (page attribute table)}—The PAT bit is bit 7 in 4-Kbyte PTEs,; it is bit 12 in 2-Mbyte and 4-
Mbyte PDES. Page-table entriesthat don’t have aPAT bit (PML4 entries, for example) assume PAT
=0.

* PCD (page cache disable)—The PCD bit ishit 4 in all page-table entries. The PCD from the PTE
or PDE is selected depending on the paging mode.

* PWT (page writethrough)—The PWT bit ishit 3 in all page-table entries. The PWT from the PTE
or PDE is selected depending on the paging mode.

Table 7-9 on page 212 shows the various combinations of the PAT, PCD, and PWT bitsused to select a
PA field within the PAT register. Table 7-9 a so shows the default memory-type values established in
the PAT register by the processor after areset. The default values correspond to the memory types

Memory System [AMD PUbllC Use] 211

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

established by the PCD and PWT bits alone in processor implementations that do not support the PAT
mechanism. In such implementations, the PAT field in page-table entriesisreserved and cleared to 0.
See “Page-Trangdlation-Table Entry Fields’ on page 143 for more information on the page-table
entries.

Table 7-9. PAT-Register PA-Field Indexing

Page Table Entry Bits i i
PAT Register Field Default Memory Type
PAT PCD PWT
0 0 0 PAO WB
0 0 1 PAl WT
0 1 0 PA2 uc-t
0 1 1 PA3 ucC
1 0 0 PA4 WB
1 0 1 PAS WT
1 1 0 PAG uc-t
1 1 1 PA7 ucC
Note:
1. Can be overridden by WC memory type set by an MTRR.

7.8.3 ldentifying PAT Support

Software determines whether a processor supports the PAT mechanism by executing the CPUID
instruction with either function 0000_0001h or function 8000_0001h. If PAT issupported, bit 16 inthe
EDX registerisset to 1 by CPUID. See Section 3.3, “Processor Feature | dentification,” on page 66 for
more information on the CPUID instruction.

If PAT issupported by a processor implementation, it is always enabled. The PAT mechanism cannot
be disabled by software. Software can effectively avoid using PAT by:

* Not setting PAT bitsin page-table entriesto 1.
* Not modifying the reset values of the PA fieldsin the PAT register.

In this case, memory is characterized using the same types that are used by implementations that do
not support PAT.

7.8.4 PAT Accesses

In implementations that support the PAT mechanism, all memory accesses that are trandlated through
the paging mechanism use the PAT index bitsto specify a PA field in the PAT register. The memory
type stored in the specified PA field is applied to the memory access. The processis summarized as:

1. Avirtual addressis calculated as aresult of amemory access.
2. Thevirtua addressistrandated to a physical address using the page-trandlation mechanism.

3. The PAT, PCD and PWT bhits are read from the corresponding page-table entry during the virtual-
address to physical-address trandl ation.

212 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

4. The PAT, PCD and PWT bhits are used to select a PA field from the PAT register.
5. The memory typeisread from the appropriate PA field.
6. The memory typeis applied to the physical-memory access using the translated physical address.

Page-Translation Table Access. The PAT hit existsonly in the PTE (4K paging) or PDEs (2/4
Mbyte paging). In the remaining upper levels (PML4, PDP, and 4KB PDEs), only the PWT and PCD
bits are used to index into the first 4 entriesin the PAT register. The resulting memory typeisused for
the next lower paging level.

7.8.5 Combined Effect of MTRRs and PAT

The memory types established by the PAT mechanism can be combined with MTRR-established
memory types to form an effective memory-type. The combined effect of MTRR and PAT memory
types are shown in Figure 7-10. In the AMDG64 architecture, reserved and undefined combinations of
MTRR and PAT memory types result in undefined behavior. If the MTRRs are disabled in
implementations that support the M TRR mechanism, the default memory typeis set to uncacheable
(UC).

Table 7-10. Combined Effect of MTRR and PAT Memory Types

PAT Memory Type MTRR Memory Type Effective Memory Type
uc uc uc
uc WC, WP, WT, WB CD

uc uc

uc- wcC wcC
WP, WT, WB CD

wcC — wcC
uc uc

wcC CD

WP WP WP
WT CD

WB WP

uc uc

WT WC, WP CD
WT, WB WT

uc uc

wcC wcC

WB WP WP
WT WT

WB WB

Memory System [AMD PUb“C Use] 213

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

7.8.6 PATs in Multi-Processing Environments

In multi-processing environments, values of CR0.CD and the PAT must be consistent across all
processors and the MTRRs in all processors must characterize memory in the same way. In other
words, matching address ranges and cachability types are written to the MTRRs for each processor.

Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR, CRO.CD and PAT valuesin other processors to ensure consistency. It isthe
responsibility of system software to initialize and maintain consistency across all processors.

7.8.7 Changing Memory Type

A physical page should not have differing cacheability types assigned to it through different virtual
mappings, they should be either all of a cacheable type (WB, WT, WP) or al of anon-cacheable type
(UC, WC). Otherwise, thismay result in aloss of cache coherency, leading to stale data and
unpredictable behavior. For thisreason, certain precautions must be taken when changing the memory
type of apage. In particular, when changing from a cachable memory type to an uncachable type the
caches must be flushed, because speculative execution by the processor may have resulted in memory
being cached even though it was not programatically referenced. The following table summarizesthe
serialization requirements for safely changing memory types.

Table 7-11. Serialization Requirements for Changing Memory Types

New Type

WB WT WP ucC WwcC

WB - a a b b

§ WT a - a b b

F WP a a - b b
S

@] uc a a a - a

wcC a a a a -

a. Remove the previous mapping (make it not present in the page tables); Flush the TLBsincluding the TLBs
of other processors that may have used the mapping, even speculatively; Create a new mapping in the
page tables using the new type.

b. In addition to the steps described in note a, software should flush the page from the caches of any processor
that may have used the previous mapping. This must be done after the TLB flushing in note a has been
completed.

7.9 Memory-Mapped I/O

Processor implementations can independently direct reads and writes to either system memory or
memory-mapped I/0O. The method used for directing those memory accesses isimplementation
dependent. In some implementations, separate system-memory and memory-mapped 1/0 buses can be
provided at the processor interface. In other implementations, system memory and memory-mapped
I/O share common data and address buses, and system logic uses sideband signal s from the processor
to route accesses appropriately. Refer to AMD data sheets and application notes for more information
about particular hardware implementations of the AMDG64 architecture.

214 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

The /O range registers (IORRs), and the top-of-memory registers allow system software to specify
where memory accesses are directed for agiven addressrange. The MTRR extensionsare described in
the following section. “IORRS’ on page 216 describes the IORRs and “ Top of Memory” on page 218
describes the top-of-memory registers. In implementations that support these features, the default
action taken when the features are disabled is to direct memory accesses to memory-mapped |/O.

7.9.1 Extended Fixed-Range MTRR Type-Field Encodings

Thefixed-range MTRRs support extensions to the type-field encodings that alow system software to
direct memory accesses to system memory or memory-mapped |/O. The extended MTRR type-field
encodings use previously reserved bits 4:3 to specify whether reads and writesto a physical-address
range are to system memory or to memory-mapped 1/0. The format for thisencoding is shown in
Figure 7-11 on page 215. The new bits are:

« WMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to O, writes are directed to memory-mapped 1/0.

* RdMem—-Bit 4. When set to 1, the processor directs read requestsfor this physical addressrangeto
system memory. When cleared to 0, reads are directed to memory-mapped 1/0.

Thetype subfield (bits 2:0) allows the encodings specified in Table 7-5 on page 201 to be used for
memory characterization.

7 5 4 3 2 0

Reserved RdMem | WrMem Type

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRS)

These extensions are enabled using the following bitsin the SY SCFG M SR:

e MtrrFixXDramEn—-Bit 18. When set to 1, RdMem and WrMem attributes are enabled. When
cleared to O, these attributes are disabled. When disabled, accesses are directed to memory-mapped
1/O space.

¢ MitrrFixDramModEn—Bit 19. When set to 1, software can read and write the RdMem and
WrMem bits. When cleared to 0, writes do not modify the RdMem and WrMem bits, and reads
return O.

To usethe MTRR extensions, system software must first set MtrrFixDramModEn=1 to allow
modification to the RdMem and WrMem bits. After the attribute bits are properly initialized in the
fixed-range registers, the extensions can be enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently direct reads and writesto either system
memory or memory-mapped I/O. The RdMem and WrMem controls are particularly useful when
shadowing ROM devices located in memory-mapped 1/0 space. It is often useful to shadow such
devicesin RAM system memory to improve access performance, but writesinto the RAM location can

Memory System [AMD PUb“C Use] 215

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

corrupt the shadowed ROM information. The MTRR extensions solve this problem. System software
can create the shadow location by setting WrMem = 1 and RdMem = 0 for the specified memory range
and then copy the ROM location into itself. Reads are directed to the memory-mapped ROM, but
writes go to the same physical addressesin system memory. After the copy is complete, system
software can changethe bit valuesto WrMem = 0 and RdMem = 1. Now reads are directed to the faster
copy located in system memory, and writes are directed to memory-mapped ROM. The ROM
responds asit would normally to awrite, whichisto ignoreit.

Not all combinations of RdMem and WrMem are supported for each memory type encoded by bits 2:0.
Table 7-12 on page 216 shows the allowable combinations. The behavior of reserved encoding
combinations (shown as gray-shaded cells) is undefined and resultsin unpredictable behavior.

Table 7-12. Extended Fixed-Range MTRR Type Encodings

RdMem | WrMem Type Implication or Potential Use

0(UC) ucl/o
1(WC) WC /O

0 0 4 (WT) WT /O
5(WP) WPI/O
6 (WB) Reserved
0(UC) :

Used while creating a shadowed ROM

1(WC)

0 1 4(WT)
5(WP) Reserved
6 (WB)
0(uC) Used to access a shadowed ROM
1(WC)

Reserved

1 0 4 (WT)

5 (WP) WP Memory
(Can be used to access shadowed ROM)

6 (WB) Reserved
0(UC) UC Memory
1(WC) WC Memory

1 1 4 (WT) WT Memory
5(WP) Reserved
6 (WB) WB Memory

7.9.2 IORRs

The IORRs operate similarly to the variable-range MTRRs. The IORRs specify whether reads and
writesin any physical-address range map to system memory or memory-mapped I/O. Up to two

216 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

address ranges of varying sizes can be controlled using the IORRs. A pair of IORRs are used to control
each addressrange: IORRBasen and IORRMaskn (n is the address-range number from 0 to 1).

Figure 7-12 on page 217 showsthe format of the |IORRBasen registers and Figure 7-13 on page 218
shows the format of the IORRMaskn registers. The fields within the register pair are read/write.

Theintersection of the |IORR range with the equivalent effective MTRR range follows the same type
encoding table (Table 7-12) asthe fixed-range MTRR, where the RdMem/WrMem and memory type
aredirectly tied together.

IORRBasen Registers. Thefieldsin these IORRs are:

« WMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to O, writes are directed to memory-mapped 1/0.

* RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address rangeto
system memory. When cleared to O, reads are directed to memory-mapped |/0.

* Range Physical-Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMDG64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

Theformat of theseregistersis shownin Figure 7-12.

63 52 51 32
Reserved, IGN PhysBase[51:32]
31 12 11 5 4 3 0
. R | W | Reserved,
PhysBase[31:12] Reserved, IGN dlr IGN
Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysBase Range Physical Base Address R/W
11:5 Reserved Reserved, Must be Zero
4 Rd RdMem Enable R/W
3 Wr WrMem Enable R/W

2.0 Reserved Reserved, Must be Zero

Figure 7-12. IORRBasen Register

IORRMaskn Registers. Thefieldsinthese |IORRs are:

217

Memory System [AI\/ID Public USe]

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

« Valid (V)—Bit 11. Indicates that the IORR pair isvalid (enabled) when set to 1. When the valid bit
iscleared to O theregister pair is not used for memory-mapped 1/0 control (disabled).

* Range Physical-Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-K byte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

The format of theseregistersisshown in Figure 7-13 on page 218.

63 52 51 32
Reserved, IGN PhysMask[51:32]
31 12 11 10 0
PhysMask[31:12] \% Reserved, IGN
Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysMask Range Physical Mask R/W
11 \% 1/0 Register Pair Enable (Valid) R/W

10.0 Reserved Reserved, Must be Zero

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fieldsisidentical to that of the variable-range MTRRS.
See page 205 for adescription of this operation.

7.9.3 IORR Overlapping

The use of overlapping IORRs is not recommended. If overlapping IORRSs are specified, the resulting
behavior isimplementation-dependent.

7.9.4 Top of Memory

Thetop-of-memory registers, TOP_MEM and TOP_MEM?2, allow system software to specify physical
addresses ranges as memory-mapped /O locations. Processor implementations can direct accesses to
memory-mapped /O differently than system 1/0, and the precise method depends on the
implementation. System software specifies memory-mapped |/O regions by writing an addressinto
each of the top-of-memory registers. The memory regions specified by the TOP_MEM registers are
aligned on 8-Mbyte boundaries asfollows:

* Memory accesses from physical address 0 to one less than the valuein TOP_MEM are directed to
system memory.

* Memory accesses from the physical address specified in TOP_MEM to FFFF_FFFFh are directed
to memory-mapped 1/0.

218 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Memory accesses from physical address 1_0000_0000h to one less than the valuein TOP_MEM?2
are directed to system memory.

* Memory accesses from the physical address specified in TOP_MEM2 to the maximum physical
address supported by the system are directed to memory-mapped 1/0.

Figure 7-14 on page 219 shows how the top-of-memory registers organize memory into separate
system-memory and memory-mapped 1/0 regions.

Theintersection of the top-of-memory range with the equivalent effective MTRR range follows the
same type encoding table (Table 7-12 on page 216) as the fixed-range MTRR, where the
RdMem/WrMem and memory type are directly tied together.

Physical Memory

Maximum System Memory
Memory-Mapped
/O
__y JOP_MEM:2
TOP_MEM2 -1
Systern Mermary
w48
Memory-Mapped 4081
0 y TOPMEM
TOP_MEM -1
Systern Memory
- _D ______

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 shows the format of the TOP_MEM and TOP_MEM?2 registers. Bits 51:23 specify an 8-
Mbyte aligned physical address. All remaining bits are reserved and ignored by the processor. System
software should clear those bitsto zero to maintain compatibility with possible future extensionsto the
registers. The TOP_MEM registers are model-specific registers. See“Memory-Typing MSRS’ on
page 638 for information on the M SR address and reset values for these registers.

219

Memory System [AI\/ID Public USe]

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

63 52 51 32
Reserved, IGN Top-of-Memory Physical Address[51:32]

31 23 2 0

Top-of-Memory Physical

Address[31:23] Reserved, IGN

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM?2)

The TOP_MEM register is enabled by setting the MtrrVarDramEn bit in the SY SCFG M SR (bit 20) to
1 (one). The TOP_MEM2 register is enabled by setting the MtrrTom2En bit in the SY SCFG M SR (bit
21) to 1 (one). The registers are disabled when their respective enable bits are cleared to 0. When the
top-of-memory registers are disabled, memory accesses default to memory-mapped 1/0 space.

Note that agiven processor may implement fewer than the architecturally-defined number of physical
address hits.

7.10 Secure Memory Encryption

Software running in non-virtualized (native) mode can utilize the Secure Memory Encryption (SME)

feature to mark individual pages of memory as encrypted through the page tables. A page of memory
marked encrypted will be automatically decrypted when read by software and automatically encrypted
when written to DRAM. SME may therefore be used to protect the contents of DRAM from physical

attacks on the system.

All memory encrypted using SME is encrypted with the sasme AES key which is created randomly
each time a system isbooted. The memory encryption key cannot be read or modified by software.

For details on using memory encryption in virtualized environments, please see Section 15.34,
“Secure Encrypted Virtualization,” on page 555.

7.10.1 Determining Support for Secure Memory Encryption

Support for memory encryption featuresisreported in CPUID Fn8000_001FEAX]. Bit O indicates
support for Secure Memory Encryption. When thisfeatureis present, CPUID Fn8000_001F[EBX]
supplies additional information regarding the use of memory encryption such aswhich pagetablebitis
used to mark pages as encrypted.

Additionally, in some implementations, the physical address size of the processor may be reduced
when memory encryption features are enabled, for example from 48 to 43 bits. In this case the upper
physical address bits are treated as reserved when the feature is enabled except where otherwise
indicated. When memory encryption is supported in an implementation, CPUID Fn8000_001F EBX]
reports any physical address size reduction present. Bitsreserved in thismode are treated the same as

220

[AMD PUb“C USG] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

other page table reserved bits, and will generate a page fault if found to be non-zero when used for
address tranglation.

Complete CPUID details for encrypted memory features can be found in Volume 3, section E.4.17.

7.10.2 Enabling Memory Encryption Extensions

Prior to using SME, memory encryption features must be enabled by setting SY SCFG M SR hit 23
(MemEncryptionModEn) to 1. Inimplementations where the physical address size of the processor is
reduced when memory encryption features are enabled, software must ensureit is executing from
addresses where these upper physical address bitsare O prior to setting

SY SCFG[MemEncryptionModEn]. Memory encryption isthen further controlled viathe page tables.

Note that software should keep the value of SY SCFG[MemEncryptionModEn] consistent across all
CPU coresin the system. Failure to do so may lead to unexpected resullts.

7.10.3 Supported Operating Modes

SME is supported in all CPU modes when CR4.PAE=1 and paging is enabled. Thisincludeslong
mode as well as|legacy PAE-enabled protected mode.

7.10.4 Page Table Support

Software utilizes the page tables to indicate if amemory pageis encrypted or unencrypted. The
location of the specific attribute bit (C-bit, or enCrypted bit) used isimplementati on-specific but may
be determined by referencing CPUID Fn8000 001F[EBX] (see Volume 3, section E.4.17 for details) .
In someimplementations, the bit used may be aphysical addressbit (e.g., address bit 47), especialy in
cases where the physical address sizeisreduced by hardware when memory encryption features are
enabled.

To mark amemory page for encryption when stored in DRAM, software sets the C-bit to 1 for the
page. If the C-bit isO, the pageis not encrypted when stored in DRAM. The C bit can be applied to
trandation table entries for any size of page - 4KB, 2MB, or 1GB.

Notethat it ispossiblefor the page tables themsel vesto belocated in encrypted memory. For instance,
if the C-bitissetinaPML4 entry, the PDPtableit pointsto (and thusal PDPEsin that table) will be
loaded from encrypted memory.

Memory System [AMD PUbllC Use] 221

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Memory Read
PTE C-Bit
Data
DRAM | =t 3> 0
€ LD
AES Decrypt 1
Memory Write

PTE C-Bit

y
o[+ > cPU
e

Figure 7-16. Encrypted Memory Accesses

7.10.5 1/O Accesses

In implementations where the physical address size is reduced when memory encryption features are
enabled, memory range checks (e.g. MTRR/TOM/IORR/etc.) to determine memory types or
DRAM/MMIO are performed using the reduced physical address size. In particular, the C-bit is not
considered aphysical address bit and is masked by hardware for purposes of these checks.

Additionally, any pages corresponding to MM IO addresses must be configured with the C-bit clear.
Encrypted 1/0 pages are not allowed and accesses with the C-bit set will result in a machine check
error.

7.10.6 Restrictions

In some hardware implementations, coherency between the encrypted and unencrypted mappings of
the same physical page are not enforced. In such asystem, prior to changing the value of the C-bit for
apage, software should flush the page from all CPU cachesin the system. If a hardware
implementation supports coherency across encryption domains as indicated by CPUID

Fn8000_001F EAX[10] then thisflush isnot required.

Simply changing the value of a C-bit on apage will not automatically encrypt the existing contents of
apage, and any datain the page prior to the C-bit modification will become unintelligible. To set the
C-bit on a page and cause its contents to become encrypted so the data remains accessible, see
Section 7.10.8, “Encrypt-in-Place,” on page 223.

222 [AMD PUb“C Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Inlegacy PAE mode, if the C-bit location isin the upper 32 bits of the page table entry, thefirst level
pagetable (the PDPtable) cannot be located in encrypted memory. Thisisbecausewhenthe CPU isin
32-bit PAE mode, the CR3 value isonly 32-bitsin length.

7.10.7 SMM Interaction

SME is available when the processor is executing in SMM, onceit has enabled paging. Any physical
address bit restrictions that exist due to memory encryption features being enabled remain in place
whilein SMM.

7.10.8 Encrypt-in-Place

It is possibleto perform an in-place encryption of datain physical memory. Thistechniqueisuseful
for setting the C-bit on a page while maintaining visibility to the page's contents such as during SME
initialization. Thisisaccomplished by creating two linear mappings of the same page where one
mapping has the C-bit set to 0 and the other has the C-bit set to 1. To avoid possible data corruption,
software should use the following algorithm for performing in-place encryption of memory:

1. Createtwo linear mappings X and Y that map to the same physical page. Mapping X has C-bit=0
and uses the WP (Write Protect) memory type. Mapping Y has C-bit=1 and uses the WB (Write-
Back) memory type.

2. PerformaWBINVD on al coresin the system.

3. Copy N bytes from mapping X to a temporary buffer in conventionally-mapped memory (for
which the C bit may or may not be set, as desired). N must be equal to the L1 cache line size as
specified by CPUID Fn8000_0005[ECX].

4. Write N bytes from the temporary buffer to Y. Note that the initial cache refill of the line for this
step will cause it to be decrypted, which corrupts the contents since it is not yet encrypted. This
step restores the original contents. (If the line were evicted before this step was completed, the
unwritten portion would get corrupted by the outgoing encryption, which is why the line can't be
copied in-place, but rather must be copied from the temporary buffer.)

5. Repeat steps 3-4 until the entire page has been copied.

Memory System [AMD PUb“C Use] 223

AMDAA
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

224 [AMD PUbllC Use] Memory System

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8 Exceptions and Interrupts

Exceptions and interrupts force control transfers from the currently-executing program to a system-
software service routine that handlesthe interrupting event. These routines are referred to as exception
handlers and interrupt handlers, or collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted program. During the control transfer to
the service routine, the processor stops executing the interrupted program and savesits return pointer.
The system-software service routine that handles the exception or interrupt is responsible for saving
the state of the interrupted program. This allows the processor to restart the interrupted program after
system software has handled the event.

When an exception or interrupt occurs, the processor uses the interrupt vector number as an index into
the interrupt-descriptor table (IDT). An IDT isused in all processor operating modes, including real
mode (al so called real-address mode), protected mode, and long mode.

Exceptions and interrupts come from three general sources:

» Exceptions occur as a result of software execution errors or other internal-processor errors.
Exceptions also occur during non-error situations, such as program single stepping or address-
breakpoint detection. Exceptions are considered synchronous events because they are a direct
result of executing theinterrupted instruction.

« Software interrupts occur as a result of executing interrupt instructions. Unlike exceptions and
external interrupts, software interrupts allow intentional triggering of the interrupt-handling
mechanism. Like exceptions, software interrupts are synchronous events.

» External interrupts are generated by system logic in response to an error or some other event
outside the processor. They are reported over the processor bus using external signaling. External
interrupts are asynchronous events that occur independently of the interrupted instruction.

Throughout this section, the term masking can refer to either disabling or delaying an interrupt. For
example, masking external interrupts delays the interrupt, with the processor holding the interrupt as
pending until it is unmasked. With floating-point exceptions (SSE and x87), masking prevents an
interrupt from occurring and causes the processor to perform a default operation on the exception
condition.

8.1 General Characteristics

Exceptionsand interrupts have several different characteristicsthat depend on how events are reported
and the implicationsfor program restart.

8.1.1 Precision

Precision describes how the exception isrelated to the interrupted program:

* Precise exceptions are reported on a predictable instruction boundary. This boundary is generally
the first instruction that has not completed when the event occurs. All previous instructions (in

Exceptions and Interrupts [AM D PUb“C Use] 225

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

program order) are alowed to complete before transferring control to the event handler. The
pointer to the instruction boundary is saved automatically by the processor. When the event
handler completes execution, it returns to the interrupted program and restarts execution at the
interrupted-instruction boundary.

» Imprecise exceptions are not guaranteed to be reported on a predictabl e instruction boundary. The
boundary can be any instruction that has not completed when the interrupt event occurs. Imprecise
events can be considered asynchronous, because the source of the interrupt is not necessarily
related to the interrupted instruction. Imprecise exception and interrupt handlers typically collect
machine-state information related to the interrupting event for reporting through system-
diagnostic software. The interrupted program is not restartable.

8.1.2 Instruction Restart

As mentioned above, precise exceptions are reported on an instruction boundary. The instruction
boundary can be reported in one of two locations:

» Most exceptions report the boundary before the instruction causing the exception. In this case, all
previous instructions (in program order) are allowed to complete, but the interrupted instruction is
not. No program state is updated as a result of partially executing an interrupted instruction.

« Some exceptions report the boundary after the instruction causing the exception. In this case, all
previous instructions—including the one executing when the exception occurred—are allowed to
complete.

Program state can be updated when the reported boundary is after the instruction causing the
exception. Thisis particularly true when the event occurs as aresult of atask switch. In this case,
the genera registers, segment-selector registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event handler cannot rely on the state of
those registers when it begins execution and must be careful in validating the state of the segment-
selector registers before restarting the interrupted task. Thisis not an issuein long mode, however,
because the hardware task-switch mechanism is disabled in long mode.

8.1.3 Types of Exceptions

There are three types of exceptions, depending on whether they are precise and how they affect
program restart:

» Faults are precise exceptions reported on the boundary before the instruction causing the
exception. Generally, faults are caused by an error condition involving the faulted instruction. Any
machine-state changes caused by the faulting instruction are discarded so that the instruction can
be restarted. The saved rlP points to the faulting instruction.

» Traps are precise exceptions reported on the boundary following the instruction causing the
exception. The trapped instruction is completed by the processor and all state changes are saved.
The saved rIP points to the instruction following the faulting instruction.

» Aborts areimprecise exceptions. Because they are imprecise, abortstypically do not alow reliable
program restart.

226 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.1.4 Masking External Interrupts

General Masking Capabilities. Software can mask the occurrence of certain exceptions and
interrupts. Masking can delay or even prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External interrupts are classified as maskable or
nonmaskabl e:

* Maskable interrupts trigger the interrupt-handling mechanism only when RFLAGS.IF=1.
Otherwise they are held pending for aslong asthe RFLAGS.IF bit is cleared to O.

* Nonmaskable interrupts (NMI) are unaffected by the value of the RFLAGS.IF bit. However, the
occurrence of an NMI masks further NMIs until an IRET instruction is executed to completion or,
in the event of atask switch, to the completion of the outgoing TSS update. An exception raised
during execution of the IRET prior to these points will result in NMI continuing to be masked for
the duration of the exception handler, until the exception handler completesan IRET.

Masking During Stack Switches. The processor delays recognition of maskable external interrupts
and debug exceptions during certain instruction sequences that are often used by software to switch
stacks. Thetypical programming sequence used to switch stacksis:

1. Load astack selector into the SS register.
2. Load astack offset into the ESP register.

If an interrupting event occurs after the selector isloaded but before the stack offset isloaded, the
interrupted-program stack pointer isinvalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the processor does not allow external
interrupts or debug exceptions to occur until the instruction immediately following the MOV SS or
POP SS instruction compl etes execution.

The recommended method of performing this sequenceisto usethe LSS instruction. LSS loads both
SS and ESP, and theinstruction inhibits interrupts until both registers are updated successfully.

8.1.5 Masking Floating-Point and Media Instructions

Any x87 floating-point exceptions can be masked and reported later using bitsin the x87 floating-
point status register (FSW) and the x87 floating-point control register (FCW). The floating-point
exception-pending exception is used for unmasked x87 floating-point exceptions (see Section
“#MF—x87 Floating-Point Exception-Pending (Vector 16)” on page 240).

The SIMD floating-point exception is used for unmasked SSE floating-point exceptions (see Section
“#XF—SIMD Floating-Point Exception (Vector 19)” on page 242). SSE floating-point exceptions are
masked using the M X CSR register. The exception mechanismis not triggered when these exceptions
are masked. Instead, the processor handles the exceptionsin adefault manner.

Exceptions and Interrupts [AM D PUbllC Use] 227

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

8.1.6 Disabling Exceptions

Disabling an exception prevents the exception condition from being recognized, unlike masking an
exception which prevents triggering the exception mechanism after the exception isrecognized. Some
exceptions can be disabled by system software running at CPL=0, using bitsin the CRO register or
CR4 register:

» Alignment-check exception (see Section “#AC—Alignment-Check Exception (Vector 17)” on
page 241).

» Device-not-avail able exception (see Section “#NM—Device-Not-Avail able Exception (Vector 7)”
on page 234).

» Machine-check exception (see Section “#MC—Machine-Check Exception (Vector 18)” on
page 242).

The debug-exception mechanism provides control over when specific breakpoints are enabled and
disabled. See Section “ Setting Breakpoints’ on page 377 for more information on how breakpoint
controls are used for triggering the debug-exception mechanism.

8.2 Vectors

Specific exception and interrupt sources are assigned afixed vector-identification number (also called
an “interrupt vector” or smply “vector”). The interrupt vector is used by the interrupt-handling
mechanism to locate the system-software service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. Thefirst 32 vectors are reserved for predefined exception
and interrupt conditions. Software-interrupt sources can trigger an interrupt using any available
interrupt vector.

Table 8-1 on page 229 lists the supported interrupt vector numbers, the corresponding exception or
interrupt name, the mnemonic, the source of the interrupt event, and a summary of the possible causes.

228 [AMD PUb“C Use] Exceptions and Interrupts

AMDA

24593—Rev. 3.36—O0October 2020

AMDG64 Technology

Table 8-1. Interrupt Vector Source and Cause
Vector Exception/Interrupt Mnemonic Cause
0 Divide-by-Zero-Error #DE DIV, IDIV, AAM instructions
1 Debug #DB Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External NMI signal
3 Breakpoint #BP INT3 instruction
4 Overflow #OF INTO instruction
5 Bound-Range #BR BOUND instruction
6 Invalid-Opcode #UD Invalid instructions
7 Device-Not-Available #NM x87 instructions
8 Double-Fault 4DF i):grerpl:t;)ct)n during the handling of another exception or
9 Coprocessor-Segment-Overrun — Unsupported (Reserved)
10 Invalid-TSS #TS Task-state segment access and task switch
11 Segment-Not-Present #NP Segment register loads
12 Stack #SS SS register loads and stack references
13 General-Protection #GP Memory accesses and protection checks
14 Page-Fault #PF Memory accesses when paging enabled
15 Reserved —
16);271 d'?L%atl hg-Point Exception- #MF | x87 floating-point instructions
17 Alignment-Check #AC Misaligned memory accesses
18 Machine-Check #MC Model specific
19 SIMD Floating-Point #XF SSE floating-point instructions
20 Reserved —
21 Control-Protection Exception #CP RET/IRET or other control transfer
22-27 |Reserved =
28 Hypervisor Injection Exception #HV Event injection
29 VMM Communication Exception #VC Virtualization event
30 Security Exception #SX Security-sensitive event in host
31 Reserved —
0-255 |External Interrupts (Maskable) #INTR | External interrupts
0-255 | Software Interrupts — INTn instruction

Table 8-2 on page 230 shows how each interrupt vector is classified. Reserved interrupt vectors are
indicated by the gray-shaded rows.

Exceptions and Interrupts

[AMD Public Use]

229

AMDAQ

AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Table 8-2. Interrupt Vector Classification
Vector Interrupt (Exception) Type Precise Class?
0 Divide-by-Zero-Error Fault Contributory
1 Debug Fault or Trap yes
2 Non-Maskable-Interrupt — —
3 Breakpoint
4 Overflow Trap .
5 Bound-Range yes Benign
6 Invalid-Opcode Fault
7 Device-Not-Available
8 Double-Fault Abort no
9 Coprocessor-Segment-Overrun
10 Invalid-TSS
1 Segment-Not-Present Contributory
12 Stack Fault yes
13 General-Protection
14 Page-Fault Benign or Contributory
15 Reserved
x87 Floating-Point Exception-
16 Pzn ; nc;lat g-Point Exceptiol - no
17 Alignment-Check yes Benign
18 Machine-Check Abort no
19 SIMD Floating-Point Fault yes
20 Reserved
21 Control Protection Fault yes Contributory
22-27 |Reserved
28 Hypervisor Injection Exception - - Benign
29 VMM Communication Exception Fault yes Contributory
30 Security Exception - yes Contributory

31 Reserved

0-255 |External Interrupts (Maskable)

0-255 | Software Interrupts

Benign

Note:

1. External interrupts are not classified by type or whether or not they are precise.

2. See Section “ #DF—Double-Fault Exception (Vector 8)” on page 234 for a definition of benign and contributory

classes.

The following sections describe each interrupt in detail. The format of the error code reported by each

interrupt is described in Section “Error Codes’ on page 245.

230

[AMD Public Use]

Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)

A #DE exception occurs when the denominator of aDIV instruction or an IDIV instructionis 0. A
#DE also occursif the result istoo large to be represented in the destination.

#DE cannot be disabled.
Error Code Returned. None.

Program Restart. #DE isafault-type exception. The saved instruction pointer pointsto the
instruction that caused the #DE.

8.2.2 #DB—Debug Exception (Vector 1)

When the debug-exception mechanism is enabled, a#DB exception can occur under any of the
following circumstances:

* Instruction execution.
» Instruction single stepping.

» Dataread.

» Datawrite.
e |/Oread.

e |/Owrite.

» Task switch.

» Debug-register access, or general detect fault (debug register accesswhen DR7.GD=1).
* Executing the INT1 instruction (opcode OF1h).

#DB conditions are enabled and disabled using the debug-control register, DR7 and RFLAGS. TF.
Each #DB condition is described in more detail in Section “ Setting Breakpoints” on page 377.

Error Code Returned. None. #DB information isreturned in the debug-status register, DR6.
Program Restart. #DB can be either afault-type or trap-type exception. In the following cases, the
saved instruction pointer pointsto the instruction that caused the #DB:

* Instruction execution.
» Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is completed, and the saved instruction pointer
points to the instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction following an instruction breakpoint resulting
ina#DB. In most cases, the processor clears RFLAGS.RF to 0 after every instruction is successfully
executed. However, in the case of the IRET, IMP, CALL, and INTn (through atask gate) instructions,
RFLAGS.RF isnot cleared to O until the next instruction successfully executes.

Exceptions and Interrupts [AM D PUb“C Use] 231

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

When a non-debug exception occurs (or when a string instruction isinterrupted), the processor
normally sets RFLAGS.RF to 1 inthe rFLAGS image that is pushed on the interrupt stack. A
subsequent IRET back to the interrupted program pops the rFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted instruction executes without causing an
instruction breakpoint, after which the processor clears RFLAGS.RF to O.

However, when a#DB exception occurs, the processor clears RFLAGS.RFto 0intherFLAGSimage
that is pushed on the interrupt stack. The #DB handler has two options:

» Disabletheinstruction breakpoint completely.

* Set RFLAGS.RF to 1 in the interrupt-stack rFLAGS image. The instruction breakpoint condition
isignored immediately after the IRET, but reoccurs if the instruction address is accessed later, as
can occur in a program loop.

8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)

An NMI exception occurs as aresult of system logic signaling a non-maskable interrupt to the
processor.

Error Code Returned. None.

Program Restart. NMI isaninterrupt. The processor recognizes an NMI at an instruction boundary.
The saved instruction pointer points to the instruction immediately following the boundary where the
NMI was recogni zed.

Masking. NMI cannot be masked. However, when an NMI is recognized by the processor,
recognition of subsequent NMIs are disabled until an IRET instruction is executed.

8.2.4 #BP—Breakpoint Exception (Vector 3)

A #BP exception occurs when an INT3 instruction is executed. The INT3 isnormally used by debug
software to set instruction breakpoints by replacing instruction-opcode bytes with the INT3 opcode.

#BP cannot be disabled.
Error Code Returned. None.

Program Restart. #BPisatrap-type exception. The saved instruction pointer pointsto the byte after
the INT3instruction. Thislocation can be the start of the next instruction. However, if theINT3isused
to replace the first opcode bytes of an instruction, the restart locationislikely to bein the middle of an
instruction. In the latter case, the debug software must replace the INT3 byte with the correct
instruction byte. The saved RIPinstruction pointer must then be decremented by one before returning
to the interrupted program. This allows the program to be restarted correctly on the interrupted-
instruction boundary.

232 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.2.5 #OF—Overflow Exception (Vector 4)

An #OF exception occurs as aresult of executing an INTO instruction while the overflow bit in
RFLAGSisset to 1 (RFLAGS.OF=1).

#OF cannot be disabled.
Error Code Returned. None.

Program Restart. #OF isatrap-type exception. The saved instruction pointer pointsto the
instruction following the INTO instruction that caused the #OF.

8.2.6 #BR—Bound-Range Exception (Vector 5)

A #BR exception can occur as aresult of executing the BOUND instruction. The BOUND instruction
compares an array index (first operand) with the lower bounds and upper bounds of an array (second
operand). If the array index is not within the array boundary, the #BR occurs.

#BR cannot be disabled.
Error Code Returned. None.

Program Restart. #BR isafault-type exception. The saved instruction pointer pointsto the BOUND
instruction that caused the #BR.

8.2.7 #UD—Invalid-Opcode Exception (Vector 6)

A #UD exception occurs when an attempt is made to execute an invalid or undefined opcode. The
validity of an opcode often depends on the processor operating mode. A #UD occurs under the
following conditions:

« Execution of any reserved or undefined opcode in any mode.

e Execution of the UDO, UD1 or UD2 instructions.

* Useof the LOCK prefix on an instruction that cannot be locked.

* Useof the LOCK prefix on alockable instruction with anon-memory target location.
e Execution of an instruction with an invalid-operand type.

e Execution of the SYSENTER or SY SEXIT instructions in long mode.

« Execution of any of thefollowing instructionsin 64-bit mode: AAA, AAD, AAM, AAS, BOUND,
CALL (opcode 9A), DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LDS, LES, POP (DS, ES,
SS), POPA, PUSH (CS, DS, ES, SS), PUSHA, SALC.

* Executionof theARPL, LAR, LLDT, LSL, LTR, SLDT, STR, VERR, or VERW instructions when
protected mode is not enabled, or when virtual-8086 mode is enabled.

* Execution of any legacy SSE instruction when CR4.0OSFXSR is cleared to 0. (For further
information, see Section “FXSAVE/FXRSTOR Support (OSFXSR)” on page 50.

Exceptions and Interrupts [AM D PUb“C Use] 233

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Execution of any SSE instruction (uses Y MM/XMM registers), or 64-bit media instruction (uses
MMX™ registers) when CRO.EM = 1.

* Execution of any SSE floating-point instruction (uses YMM/XMM registers) that causes a
numeric exception when CR4.0OSXMMEXCPT = 0.

* Useof the DR4 or DR5 debug registers when CR4.DE = 1.
» Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes) for additional information on invalid
conditions.

#UD cannot be disabled.
Error Code Returned. None.

Program Restart. #UD isafault-type exception. The saved instruction pointer pointsto the
instruction that caused the #UD.

8.2.8 #NM—Device-Not-Available Exception (Vector 7)

A #NM exception occurs under any of the following conditions:

* AnFWAIT/WAIT instruction is executed when CRO.MP=1 and CRO.TS=1.
* Any x87 instruction other than FWAIT is executed when CRO.EM=1.

* Any x87 ingtruction is executed when CRO.TS=1. The CRO.MP hit controls whether the
FWAIT/WAIT instruction causes an #NM exception when TS=1.

e Any 128-bit or 64-bit mediainstruction when CRO.TS=1.

#NM can be enabled or disabled under the control of the CRO.MP, CR0O.EM, and CRO.TS bitsas
described above. See Section 3.1.1 for more information on the CRO bits used to control the #NM
exception.

Error Code Returned. None.

Program Restart. #NM isafault-type exception. The saved instruction pointer pointsto the
instruction that caused the #NM.

8.2.9 #DF—Double-Fault Exception (Vector 8)

A #DF exception can occur when a second exception occurs during the handling of aprior (first)
exception or interrupt handler.

Usually, thefirst and second exceptions can be handled sequentially without resulting in a#DF. Inthis
case, thefirst exception is considered benign, asit does not harm the ability of the processor to handle
the second exception.

In some cases, however, the first exception adversely affects the ability of the processor to handle the
second exception. These exceptions contribute to the occurrence of a#DF, and are called contributory

234 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

exceptions. If acontributory exception isfollowed by another contributory exception, a double-fault
exception occurs. Likewise, if apage fault isfollowed by another page fault or a contributory
exception, adouble-fault exception occurs.

Table 8-3 shows the conditions under which a#DF occurs. Page faults are either benign or
contributory, and are listed separately. Seethe “Class’ column in Table 8-2 on page 230 for
information on whether an exception is benign or contributory.

Table 8-3. Double-Fault Exception Conditions

First Interrupting Event Second I nterrupting Event
Contributory Exceptions
 Divide-by-Zero-Error Exception Invalid-TSS Exception
e Invalid-TSS Exception Segment-Not-Present Exception
» Segment-Not-Present Exception Stack Exception
» Stack Exception General-Protection Exception
« Genera-Protection Exception
Page Fault Exception
Invalid-TSS Exception
Page Fault Exception Segment-Not-Present Exception

Stack Exception
General-Protection Exception

If athird interrupting event occurs while transferring control to the #DF handler, the processor shuts
down. Only an NMI, RESET, or INIT can restart the processor in this case. However, if the processor
shutsdown asit isexecuting an NMI handler, the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.
Error Code Returned. Zero.

Program Restart. #DF isan abort-type exception. The saved instruction pointer isundefined, and the
program cannot be restarted.

8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)

Thisinterrupt vector isreserved. It isfor adiscontinued exception originally used by processors that
supported external x87-instruction coprocessors. On those processors, the exception conditionis
caused by an invalid-segment or invalid-page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general -protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

Exceptions and Interrupts [AM D PUb“C Use] 235

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

8.2.11 #TS—Invalid-TSS Exception (Vector 10)

A #TS exception occurs when an invalid reference is made to a segment selector as part of atask
switch. A #TS also occurs during a privilege-changing control transfer (through acall gate or an
interrupt gate), if areferenceis madeto aninvalid stack-segment selector located inthe TSS. Table 8-4
liststhe conditions under which a#TS occurs and the error code returned by the exception mechanism.

#TS cannot be disabled.
Error Code Returned. See Table 8-4 for alist of error codes returned by the #TS exception.

Program Restart. #TSisafault-type exception. If the exception occurs before |oading the segment
selectors from the TSS, the saved instruction pointer pointsto the instruction that caused the #TS.
However, most #T S conditions occur due to errors with the loaded segment selectors. When an error is
found with a segment selector, the hardware task-switch mechanism compl etes |oading the new task
state from the TSS, and then triggers the #T'S exception mechanism. In this case, the saved instruction
pointer points to the first instruction in the new task.

Inlong mode, a#TS cannot be caused by atask switch, because the hardware task-switch mechanism
isdisabled. A #T S occurs only as aresult of acontrol transfer through a gate descriptor that resultsin
aninvalid stack-segment reference using an SS selector inthe TSS. In this case, the saved instruction
pointer always points to the control -transfer instruction that caused the #TS.

Table 8-4. Invalid-TSS Exception Conditions

Selector

Error Condition Error Code
Reference

- TSS limit check on atask switch
Task-State TSS Selector Index

Segment TSS limit check on an inner-level stack pointer
LDT does not point to GDT
LDT reference outside GDT
LDT Segment LDT Selector Index

GDT entry isnot an LDT descriptor

LDT descriptor is not present
CSreference outside GDT or LDT

Privilege check (conforming DPL > CPL)
Code Segment CS Selector Index
Privilege check (non-conforming DPL * CPL)

Type check (CS not executable)

Data segment reference outside GDT or LDT
Data Segment DS, ES, FSor GS Selector Index
Type check (data segment not readable)

SSreference outside GDT or LDT

Privilege check (stack segment descriptor DPL 1 CPL)
Stack Segment SS Selector Index
Privilege check (stack segment selector RPL 1 CPL)

Type check (stack segment not writable)

236 [AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.2.12 #NP—Segment-Not-Present Exception (Vector 11)

An#NP occurswhen an attempt is made to load asegment or gate with a clear present bit, as described
in the following situations:

* UsingtheMOV, POP, LDS, LES, LFS, or LGSinstructionsto load a segment selector (DS, ES, FS,
and GS) that references a segment descriptor containing a clear present bit (descriptor.P=0).

* Fartransfer to a CSthat isnot present.
» Referencing a gate descriptor containing aclear present bit.

» Referencing aTSS descriptor containing aclear present bit. Thisincludes attemptsto load the TSS
descriptor using the LTR instruction.

» Attempting to load a descriptor containing a clear present bit into the LDTR using the LLDT
instruction.

» Loading a segment selector (CS, DS, ES, FS, or GS) as part of atask switch, with the segment
descriptor referenced by the segment selector having a clear present bit. In long mode, an #NP
cannot be caused by atask switch, because the hardware task-switch mechanism is disabled.

When |oading a stack-segment selector (SS) that references a descriptor with aclear present bit, a
stack exception (#SS) occurs. For information on the #SS exception, see the next section, “#SS—
Stack Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment descriptor causing the #NP
exception.

Program Restart. #NPisafault-type exception. In most cases, the saved instruction pointer pointsto
theinstruction that |oaded the segment sel ector resulting in the #NP. See Section “ Exceptions During a
Task Switch” on page 245 for a description of the consequences when this exception occurs during a
task switch.

8.2.13 #SS—Stack Exception (Vector 12)

An #SS exception can occur in the following situations:

* Implied stack references in which the stack address is not in canonical form. Implied stack
references include al push and pop instructions, and any instruction using RSP or RBP as a base
register.

» Attempting to load a stack-segment selector that references a segment descriptor containing aclear
present bit (descriptor.P=0).

* Any stack accessthat failsthe stack-limit check.

#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the #SS, as shown in Table 8-5 on
page 238:

Exceptions and Interrupts [AM D PUb“C Use] 237

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-5. Stack Exception Error Codes

Stack Exception Cause Error Code
Stack-segment descriptor present bit is clear SS Selector Index
Stack-limit violation 0
Stack reference using a non-canonical address 0

Program Restart. #SSisafault-typeexception. In most cases, the saved instruction pointer pointsto
the instruction that caused the #SS. See Section “ Exceptions During a Task Switch” on page 245 for a
description of the consequences when this exception occurs during atask switch.

8.2.14 #GP—General-Protection Exception (Vector 13)

Table 8-6 describes the general situationsthat can cause a#GP exception. The tableisnot an
exhaustive, detailed list of #GP conditions, but rather aguide to the situations that can cause a#GP. If
aninvalid use of an AMD64 architectural feature resultsin a#GP, the specific cause of the exceptionis
described in detail in the section describing the architectural feature.

#GP cannot be disabled.

Error Code Returned. Asshown in Table 8-6, aselector index isreported asthe error code if the
#GPis due to a segment-descriptor access. In all other cases, an error code of O isreturned.

Program Restart. #GPisafault-type exception. In most cases, the saved instruction pointer pointsto
theinstruction that caused the #GP. See Section “Exceptions During a Task Switch” on page 245 for a
description of the consequences when this exception occurs during atask switch.

Table 8-6. General-Protection Exception Conditions

Error Condition Error Code

Any segment privilege-check violation, while loading a segment register.

Any segment type-check violation, while loading a segment register.
Loading anull selector into the CS, SS, or TR register.

Accessing a gate-descriptor containing a null segment selector.
Referencing an LDT descriptor or TSS descriptor located in the LDT.
Attempting a control transfer to abusy TSS (except IRET).

In 64-bit mode, loading a non-canonical base address into the GDTR or IDTR. Selector Index
In long mode, accessing a system or call-gate descriptor whose extended type field is not O.

In long mode, accessing a system descriptor containing a non-canonical base address.

In long mode, accessing a gate descriptor containing a non-canonical offset.

In long mode, accessing a gate descriptor that does not point to a 64-bit code segment.

In long mode, accessing a 16-bit gate descriptor.

In long mode, attempting a control transfer to a TSS or task gate.

238 [AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 8-6. General-Protection Exception Conditions (continued)

Error Condition Error Code
Any segment limit-check or non-canonical address violation (except when using the SS register).
Accessing memory using anull segment register.

Writing memory using aread-only segment register.

Attempting to execute an SSE instruction specifying an unaligned memory operand.

Attempting to execute code that is past the CS segment limit or at a non-canonical RIP.
Executing a privileged instruction while CPL > 0.

Executing an instruction that is more than 15 bytes long.

Writing a1 into any register field that is reserved, must be zero (MBZ).

Using WRM SR to write aread-only MSR.

Using WRM SR to write a non-canonical value into an M SR that must be canonical.
Using WRMSR to set an invalid type encoding in an MTRR or the PAT MSR.
Enabling paging while protected mode is disabled.

Setting CRO.NW=1 while CR0.CD=0.

Any long-mode consistency-check violation.

8.2.15 #PF—Page-Fault Exception (Vector 14)

A #PF exception can occur during amemory accessin any of the following situations:

* A page-translation-table entry or physical page involved in translating the memory access is not
present in physical memory. Thisisindicated by acleared present bit (P=0) in the translation-table
entry.

* An attempt is made by the processor to load the instruction TLB with a trandation for a non-
executable page.
« Thememory access fails the paging-protection checks (user/supervisor, read/write, or both).

* Areserved bit in one of the page-trandation-table entriesis set to 1. A #PF occurs for this reason
only when CR4.PSE=1 or CR4.PAE=L1.

* A dataaccessto auser-mode address caused a protection key violation.

#PF cannot be disabled.

CR2 Register. Thevirtual (linear) address that caused the #PF is stored in the CR2 register. The
legacy CR2 register is 32 bitslong. The CR2 register in the AMD64 architecture is 64 bitslong, as
shown in Figure 8-1 on page 240. In AMD64 implementations, when either software or a page fault
causes awrite to the CR2 register, only the low-order 32 bits of CR2 are used in legacy mode; the
processor clearsthe high-order 32 bits.

Exceptions and Interrupts [AM D PUb“C Use] 239

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Page-Fault Virtual Address

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error codeis pushed onto the page-fault exception-handler
stack. See Section “Page-Fault Error Code” on page 246 for a description of this error code.

Program Restart. #PFisafault-type exception. In most cases, the saved instruction pointer pointsto
the instruction that caused the #PF. See Section “ Exceptions During a Task Switch” on page 245 for a
description of what can happen if this exception occurs during atask switch.

8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)

The #MF exception is used to handle unmasked x87 floating-point exceptions. An #MF occurs when
all of thefollowing conditions are true:

» CRO.NE-L

* Anunmasked x87 floating-point exception is pending. Thisisindicated by an exception bit in the
x87 floating-point status-word register being set to 1

» Thecorresponding mask bit in the x87 floating-point control-word register is cleared to 0.
* The FWAIT/WAIT instruction or any waiting floating-point instruction is executed.

If thereis an exception mask bit (in the FPU control word) set, the exception is not reported. Instead,
the x87-instruction unit responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF exception are (including mnemonics):
* |E—Invalid-operation exception (also called #l), which is either:
- |E done—Invalid arithmetic-operand exception (also called #1A), or
- SFand | E together—x87 Stack-fault exception (also called #1S).
* DE—Denormalized-operand exception (also called #D).
» ZE—Zero-divide exception (also called #2).
* OE—Overflow exception (also called #0O).
* UE—Underflow exception (also called #U).
* PE—Precision exception (also called #P or inexact-result exception).

Error Code Returned. None. Exception information is provided by the x87 status-word register. See
“x87 Floating-Point Programming” in Volume 1 for more information on using this register.

Program Restart. #MF isafault-type exception. The #MF exception isnot precise, because multiple
instructions and exceptions can occur before the #MF handler isinvoked. Also, the saved instruction

240 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
AMDG64 Technology

24593—Rev. 3.36—O0October 2020

pointer does not point to the instruction that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point instruction or FWAIT/WAIT instruction that
is about to be executed when the #MF occurs. The address of the last instruction that caused an x87
floating-point exception isin the x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this register.

Masking. Each type of x87 floating-point exception can be masked by setting the appropriate bitsin
the x87 control-word register. See “x87 Floating-Point Programming” in Volume 1 for more
information on using this register.

#MF can a so be disabled by clearing the CRO.NE bit to 0. See Section “Numeric Error (NE) Bit” on
page 44 for more information on using this bit.

8.2.17 #AC—Alignment-Check Exception (Vector 17)

An #AC exception occurs when an unaligned-memory datareference is performed while alignment
checking is enabled.

After aprocessor reset, #A C exceptions are disabled. Software enables the #AC exception by setting
the following register bits:

« CRO.AM=1
« RFLAGSAC=1

When the above register bits are set, an #A C can occur only when CPL=3. #AC never occurs when
CPL<3.

Table 8-7 liststhe datatypes and the alignment boundary required to avoid an #A C exception when the
mechanism is enabled.

Table 8-7. Data-Type Alighment

Supported Data Type R?g;l;eg(ﬁjlr;%r;rrny?t

Word 2
Doubleword 4
Quadword 8

Bit string 2, 4 or 8 (depends on operand size)
256-bit media 16
128-bit media 16
64-bit media 8
Segment selector 2
32-bit near pointer 4
32-hit far pointer 2
48-bit far pointer 4

Exceptions and Interrupts

[AMD Public Use]

241

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-7. Data-Type Alignment (continued)

Supported Data Type R?g;{;egﬁr']%g?y?ﬂ
x87 Floating-point single-precision 4
x87 Floating-point double-precision 8
x87 Floating-point extended-precision 8
x87 Floating-point save areas 2 or 4 (depends on operand size)

Error Code Returned. Zero.

Program Restart. #AC isafault-type exception. The saved instruction pointer points to the
instruction that caused the #AC.

8.2.18 #MC—Machine-Check Exception (Vector 18)

The#M C exceptionismodel specific. Processor implementations are not required to support the #MC
exception, and those implementations that do support #MC can vary in how the #MC exception
mechanism works.

The exception is enabled by setting CR4.MCE to 1. The machine-check architecture can include
model-specific masking for controlling the reporting of some errors. Refer to Chapter 9, “Machine
Check Architecture,” for more information.

Error Code Returned. None. Error information is provided by model-specific registers (MSRs)
defined by the machine-check architecture.

Program Restart. #MC isan abort-type exception. Thereisno reliable way to restart the program. If
the EIPV flag (EIPvalid) issetinthe MCG_Status M SR, the saved CS and rl P point to the instruction
that caused theerror. If EIPisclear, the CS:rlP of theinstruction causing thefailureis not known or the
machine check isnot related to a specific instruction.

8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)

The #XF exception is used to handle unmasked SSE floating-point exceptions. A #XF exception
occurs when all of the following conditions are true:

» A SSE floating-point exception occurs. The exception causes the processor to set the appropriate
exception-status bit in the MXCSR register to 1.

» The exception-mask bit in the MXCSR that corresponds to the SSE floating-point exception is
clear (=0).

* CR4.0SXMMEXCPT=1, indicating that the operating system supports handling of SSE floating-
point exceptions.

The exception-mask bits are used by software to specify the handling of SSE floating-point
exceptions. When the corresponding mask hit is cleared to 0, an exception occurs under the control of

242 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

the CR4.0OSXMMEXCPT hit. However, if themask bit isset to 1, the SSE floating-point unit responds
in adefault manner and execution proceeds normally.

The CR4.0SXMMEXCPT hit specifies the interrupt vector to be taken when an unmasked SSE
floating-point exception occurs. When CR4.OSXMMEXCPT=1, the #XF interrupt vector istaken
when an exception occurs. When CR4.0SXMMEX CPT=0, the #UD (undefined opcode) interrupt
vector istaken when an exception occurs.

The SSE floating-point exceptions reported by the #XF exception are (including mnemonics):
* |E—Invalid-operation exception (also called #l).

* DE—Denormalized-operand exception (also called #D).

» ZE—Zero-divide exception (also called #Z).

* OE—Overflow exception (also called #0O).

* UE—Underflow exception (also called #U).

* PE—Precision exception (also called #P or inexact-result exception).

Each type of SSE floating-point exception can be masked by setting the appropriate bitsin the
MXCSR register. #XF can a so be disabled by clearing the CR4.OSXMMEXCPT bit to 0.

Error Code Returned. None. Exception information is provided by the SSE floating-point MXCSR
register. See “Instruction Reference” in Volume 4 for more information on using thisregister.

Program Restart. #XF isafault-type exception. Unlike the #MF exception, the #XF exception is
precise. The saved instruction pointer pointsto the instruction that caused the #XF.

8.2.20 #CP—Control-Protection Exception (Vector 21)

A #CP exception is generated when shadow stacks are enabled (CR4.CET=1) and any of thefollowing
situations occur:

* For RET or IRET instructions, the return addresses on the shadow stack and the data stack do not
match.

* Aninvalid supervisor shadow stack token is encountered by the CALL, RET, IRET, SETSSBSY
or RSTORSSP instructions or during the delivery of an interrupt or exception.

» Forinter-privilege RET and IRET instructions, the SSPis not 8-byte aligned, or the previous SSP
from shadow stack is not 4-byte aligned or, in legacy or compatibility mode, is not less than 4GB.

» Atask switchinitiated by IRET where the incoming SSPis not aligned to 4 bytes or is not less than
4GB.

Error Code Returned. The#CP error codeis pushed onto the control-protection exception-handler
stack. See Section “Control-Protection Error Code” on page 246 for adescription of this error code.

Program Restart. #CPis afault-type exception. In most cases, the saved instruction pointer pointsto
the instruction that caused the #CP. See Section “ Exceptions During a Task Switch” on page 245 for a
description of what can happen if this exception occurs during atask switch.

Exceptions and Interrupts [AM D PUb“C Use] 243

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

8.2.21 #HV—Hypervisor Injection Exception (Vector 28)

The #HV exception may be injected by the hypervisor into a secure guest VM to notify the VM of
pending events. See Section 15.36.16 for detalils.

8.2.22 #VC—VMM Communication Exception (Vector 29)

The #V C exception is generated when certain events occur inside a secure guest VM. See
Section 15.35.5 for more details.

8.2.23 #SX—Security Exception (Vector 30)

The #SX exception is generated by security-sensitive events under SVM. See Section 15.28 for
details.

8.2.24 User-Defined Interrupts (Vectors 32—-255)

User-defined interrupts can beinitiated either by system logic or software. They occur when:

» System logic signals an external interrupt request to the processor. The signaling mechanism and
the method of communicating the interrupt vector to the processor are implementation dependent.

» Software executesan INTninstruction. The INTn instruction operand provides the interrupt vector
number.

Both methods can be used to initiate an interrupt into vectors 0 through 255. However, because vectors
0 through 31 are defined or reserved by the AMDG64 architecture, software should not use vectorsin
thisrange for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the interrupt source:

» Externa interrupts are recognized on instruction boundaries. The saved instruction pointer points
to the instruction immediately following the boundary where the externa interrupt was
recognized.

» If the interrupt occurs as a result of executing the INTn instruction, the saved instruction pointer
pointsto theinstruction after the INTn.

Masking. The ability to mask user-defined interrupts depends on the interrupt source:

» Externa interrupts can be masked using the RFLAGS.IF bit. Setting RFLAGS.IF to 1 enables
external interrupts, while clearing RFLAGS.IF to 0 inhibits them.

» Softwareinterrupts (initiated by the INTn instruction) cannot be disabled.

244 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.3 Exceptions During a Task Switch

An exception can occur during atask switch while loading a segment selector. Page faults can also
occur when accessing aTSS. In these cases, the hardware task-switch mechanism completes loading
the new task state from the TSS, and then triggers the appropriate exception mechanism. No other
checksare performed. When this happens, the saved instruction pointer pointsto thefirst instructionin
the new task.

In long mode, an exception cannot occur during atask switch, because the hardware task-switch
mechanism is disabled.

8.4 Error Codes

The processor exception-handling mechanism reports error and status information for some
exceptions using an error code. The error code is pushed onto the stack by the exception mechanism
during the control transfer into the exception handler. The error code formats are described in the
following sections.

8.4.1 Selector-Error Code

Figure 8-2 shows the format of the selector-error code.

31 16 15 3

Reserved Selector Index

- — N
— 0 —|F
=4 X m|o

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:

« EXT—BIt 0. If thisbit is set to 1, the exception source is external to the processor. If cleared to 0,
the exception source isinternal to the processor.

« |IDT—BIt 1. If this bit is set to 1, the error-code selector-index field references a gate descriptor
located in the interrupt-descriptor table (IDT). If cleared to O, the selector-index field references a
descriptor in either the global-descriptor table (GDT) or local-descriptor table (LDT), asindicated
by the TI bit.

« TI—Bit 2. If this bit is set to 1, the error-code selector-index field references a descriptor in the
LDT. If cleared to O, the selector-index field references a descriptor in the GDT. The TI bit is
relevant only when the IDT bit iscleared to O.

» Sdector Index—Bits 15:3. The selector-index field specifies the index into either the GDT, LDT,
or IDT, asspecified by the IDT and T bits.

Some exceptions return a zero in the selector-error code.

Exceptions and Interrupts [AM D PUb“C Use] 245

AMDAQ

AM

D64 Technology 24593—Rev. 3.36—O0ctober 2020

8.4.2 Page-Fault Error Code

Figure 8-4 showsthe format of the page-fault error code.

31 30 7 6 5 4 3 2 10
R I |R|U|IR
M Reserved 2 E S|P
P V|S|W

Figure 8-3. Page-Fault Error Code

Theinformation reported by the page-fault error code includes:

P—Bit 0. If thisbit is cleared to 0, the page fault was caused by anot-present page. If thisbit is set
to 1, the page fault was caused by a page-protection violation.

RW—BIt 1. If thisbit iscleared to 0, the access that caused the page fault isamemory read. If this
bit is set to 1, the memory access that caused the page fault was a write. This bit does not
necessarily indicate the cause of the page fault was aread or write violation.

U/S—Bit 2. If this bit is cleared to 0, an access in supervisor mode (CPL=0, 1, or 2) caused the
pagefault. If thishitisset to 1, an accessin user mode (CPL=3) caused the pagefault. Thishit does
not necessarily indicate the cause of the page fault was aprivilege violation.

RSV—BIt 3. If this bit is set to 1, the page fault is a result of the processor reading a 1 from a
reserved field within a page-trandation-table entry. This type of page fault occurs only when
CR4.PSE=1 or CR4.PAE=L. If this bit is cleared to 0, the page fault was not caused by the
processor reading a1l from areserved field.

I/D—Bit 4. If this bit is set to 1, it indicates that the access that caused the page fault was an
instruction fetch. Otherwise, thishit iscleared to 0. Thisbit isonly defined if no-execute featureis
enabled (EFER.NXE=1 & & CR4.PAE=1).

PK—BIt 5. If this bit is set to 1, it indicates that a data access to a user-mode address caused a
protection key violation. This fault only occurs if memory protection keys are enabled
(CR4.PKE=1).

SS—BIt 6. If thishit isset to 1, the page fault was caused by a shadow stack access. Thisbitisonly
set when the shadow stack feature is enabled (CR4.CET=1).

RMP—BIt 31. If thishit isset to 1, the page fault isaresult of the processor encountering an RMP
violation. This type of page fault only occurs when SY SCFG[SecureNestedPagingEn]=1. If this
bit is cleared to 0, the page fault was not caused by an RMP violation. See section 15.36.10 for
additional information.

8.4.3 Control-Protection Error Code

Figure 8-4 showsthe format of the #CP error code.

246

[AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

31 15 14 0

Reserved Control-protection error code

Figure 8-4. Control-Protection Error Code
The control-protection error codes are defined below:

Table 8-8. Control-Protection Error Codes

Error Code Value Name Cause
1 NEAR-RET A RET (near) instruction encountered a return address mismatch.
2 FAR-RET/IRET |A RET (far) or IRET instruction encountered a return address mismatch.
3 RSTORSSP An RSTORSSP instruction encountered an invalid shadow stack restore
token.
4 SETSSBSY A SETSSBSY instruction encountered an invalid supervisor shadow
stack token.

8.5 Priorities

To allow for consistent handling of multiple-interrupt conditions, simultaneousinterrupts are
prioritized by the processor. The AM D64 architecture defines priorities between groups of interrupts,
and interrupt prioritization within agroup isimplementation dependent. Table 8-9 shows the interrupt
priorities defined by the AMD64 architecture.

When simultaneous interrupts occur, the processor transfers control to the highest-priority interrupt
handler. Lower-priority interrupts from external sources are held pending by the processor, and they
are handled after the higher-priority interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when the high-priority interrupt handler
completes and transfers control back to the interrupted instruction. Softwareinterrupts are discarded as
well, and reoccur when the software-interrupt instruction is restarted.

Table 8-9. Simultaneous Interrupt Priorities

Igiie; Iutst Interrupt Condition Ir:}zrczcl;rpt
(High) Processor Reset —
0 Machine-Check Exception 18
External Processor Initialization (INIT)
1 SMI Interrupt —
External Clock Stop (Stpclk)

Exceptions and Interrupts [AM D PUbllC Use] 247

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-9. Simultaneous Interrupt Priorities (continued)

Igf; |ut§)/t Interrupt Condition I rl}grcigrpt

) Data, and 1/0 Breakpoint (Debug Register) 1
Single-Step Execution Instruction Trap (RFLAGS.TF=1)

3 Non-Maskable Interrupt 2
Maskable External Interrupt (INTR) 32-255
Instruction Breakpoint (Debug Register) 1

5 Code-Segment-Limit Violation! 13
Instruction-Fetch Page Fault! 14
Invalid Opcode Exception® 6

6 Device-Not-Available Exception 7
Instruction-Length Violation (> 15 Bytes) 13
Divide-by-zero Exception 0
Invalid-TSS Exception 10
Segment-Not-Present Exception 11
Stack Exception 12
General-Protection Exception 13

- Data-Access Page Fault 14
Floating-Point Exception-Pending Exception 16
Alignment-Check Exception 17
SIMD Floating-Point Exception 19
Control-Protection Exception 21
Hypervisor Injection Exception 28
VMM Communication Exception 29

Note:

1. Thisreflectstherelative priority for faults encountered when fetching thefirst byte of aninstruction. Inthefetching and decoding
of subsequent bytes of an instruction, if those bytes span the segment limit or cross into a non-executable or not-present page,
the fetch will result in a #GP(0) fault or #PF as appropriate, preventing those bytes from being accessed. However, if the
instruction can be determined to be invalid based just on the bytes preceding that boundary, a #UD fault may take priority.
This behavior is model-dependent.

8.5.1 Floating-Point Exception Priorities

Floating-point exceptions (SSE and x87 floating-point) can be handled in one of two ways:

» Unmasked exceptions are reported in the appropriate floating-point status register, and a software-
interrupt handler is invoked. See Section “#MF—x87 Floating-Point Exception-Pending (Vector
16)” on page 240 and Section “#XF—SIMD Floating-Point Exception (Vector 19)” on page 242
for more information on the floating-point interrupts.

248 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Masked exceptions are also reported in the appropriate floating-point status register. Instead of
transferring control to an interrupt handler, however, the processor handles the exception in a
default manner and execution proceeds.

If the processor detects more than one exception while executing a single floating-point instruction, it
prioritizes the exceptions in a predictable manner. When responding in a default manner to masked
exceptions, it is possible that the processor acts only on the high-priority exception and ignores lower-
priority exceptions. In the case of vector (SIMD) floating-point instructions, priorities are set on sub-
operations, not across all operations. For example, if the processor detects and acts on a QNaN
operand in one sub-operation, the processor can still detect and act on a denormal operand in another
sub-operation.

When reporting SSE floating-point exceptions before taking an interrupt or handling them in adefault
manner, the processor first classifiesthe exceptions asfollows:

* Input exceptions include SNaN operand (#l), invalid operation (#1), denormal operand (#D), or
zero-divide (#Z). Using a NaN operand with a maximum, minimum, compare, or convert
instruction is also considered an input exception.

» Output exceptionsinclude numeric overflow (#O), numeric underflow (#U), and precision (#P).
Using the above classification, the processor applies the following procedure to report the exceptions:
1. Theexceptionsfor al sub-operations are prioritized.

2. The exception conditions for all sub-operations arelogically ORed together to form a single set of
exceptions covering all operations. For example, if two sub-operations produce a denormal result,
only one denormal exception is reported.

3. If the set of exceptions includes any unmasked input exceptions, al input exceptions are reported
in MCXSR, and no output exceptions are reported. Otherwise, al input and output exceptions are
reported in MCXSR.

4. 1f any exceptions are unmasked, control is transferred to the appropriate interrupt handler.

Table 8-10 on page 249 lists the priorities for simultaneous floating-point exceptions.

Table 8-10. Simultaneous Floating-Point Exception Priorities

Exception . -
Priority Exception Condition
SNaN Operand
Hiah NaN Operand of Maximum, Minimum, Compare, and Convert
('(;3) Instructions (Vector Floating-Point) #

Stack Overflow (x87 Floating-Point)
Stack Underflow (x87 Floating-Point)
1 QNaN Operand —

Exceptions and Interrupts [AM D PUb“C Use] 249

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-10. Simultaneous Floating-Point Exception Priorities (continued)

E;rciieti'tzn Exception Condition

) Invalid Operation (Remaining Conditions) #l
Zero Divide #Z
3 Denormal Operand #D
4 Numeric Overflow #O
Numeric Underflow #U

5 .
(Low) Precision #P

8.5.2 External Interrupt Priorities

The AMDG64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest. The organization of these priority classesisimplementation dependent. A typical method isto
use the upper four bits of the interrupt vector number to define the priority. Thus, interrupt vector 53h
has apriority of 5 and interrupt vector 37h has a priority of 3.

A new control register (CR8) isintroduced by the AMDG64 architecture for managing priority classes.
Thisregister, called the task-priority register (TPR), usesitsfour low-order bitsto specify atask
priority. The remaining 60 bits are reserved and must be written with zeros. Figure 8-5 showsthe
format of the TPR.

The TPR isavailable only in 64-bit mode.

63 4 3 0

Task Priority
(TPR)

Reserved, MBZ

Figure 8-5. Task Priority Register (CR8)

System software can use the TPR register to temporarily block low-priority interrupts from
interrupting ahigh-priority task. Thisis accomplished by loading TPR with avalue corresponding to
the highest-priority interrupt that isto be blocked. For example, loading TPR with avalue of 9 (1001b)
blocks all interruptswith apriority classof 9 or less, while allowing al interrupts with apriority class
of 10 or moreto be recognized. Loading TPR with O enables all external interrupts. Loading TPR with
15 (1111b) disables all external interrupts. The TPR is cleared to O on reset.

System software reads and writes the TPR using aMOV CR8 instruction. The MOV CR8 instruction
requires aprivilege level of 0. Programs running at any other privilege level cannot read or write the
TPR, and an attempt to do so resultsin a general-protection exception (#GP).

250 [AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

A serializing instruction is not required after loading the TPR, because anew priority level is
established when the MOV instruction compl etes execution. For example, assume two sequential TPR
loads are performed, in which alow valueisfirst loaded into TPR and immediately followed by aload
of ahigher value. Any pending, lower-priority interrupt enabled by the first MOV CR8 is recognized
between the two MOV's.

The TPR isan architectural abstraction of the interrupt controller (1C), which prioritizes and manages
external interrupt delivery to the processor. The IC can be an external system device, or it can be
integrated on the chip likethe local advanced programmableinterrupt controller (APIC). Typically, the
|C contains apriority mechanism similar, if not identical to, the TPR. TheIC, however, is
implementation dependent, and the underlying priority mechanisms are subject to change. The TPR,
by contragt, is part of the AMDG64 architecture.

Effect of IC on TPR. Thefeatures of the implementation-specific |C can impact the operation of the
TPR. For example, the TPR might affect interrupt delivery only if the IC isenabled. Also, the mapping
of an external interrupt to a specific interrupt priority isan implementation-specific behavior of theIC.

Whilethe CR8 register provides the same functionality asthe TPR at offset 80h of the local APIC,
software should only use one mechanism to access the TPR. For example, updating the TPR with a
writeto thelocal APIC offset 0x80 but then reading it withaM OV CR8is not guaranteed to return the
same value that was written by the local APIC write.

8.6 Real-Mode Interrupt Control Transfers

Inreal mode, the IDT isatable of 4-byte entries, one entry for each of the 256 possible interrupts
implemented by the system. Thereal mode IDT isoften referred to asan interrupt vector table, or IVT.
Table entries contain afar pointer (CS:1P pair) to an exception or interrupt handler. The base of the
IDT isstored inthe IDTR register, which isloaded with avalue of 00h during a processor reset.
Figure 8-6 on page 252 shows how the real-mode interrupt handler islocated by the interrupt
mechanism.

Exceptions and Interrupts [AM D PUb“C Use] 251

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
Memory
Interrupt-Descriptor

Table

Interrupt Vector Y i N

---------------- Interrupt Handler
Offset L
4 E: -
IDT Base Address >

Interrupt-Descriptor-Table Register

Figure 8-6. Real-Mode Interrupt Control Transfer

When an exception or interrupt occurs in real mode, the processor performs the following:

1

Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. ClearsEFLAGS.IFto0Oand EFLAGS.TFto 0.
3.
4

Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.
Locates the interrupt-handler pointer (CS:IP) in the IDT by scaling the interrupt vector by four

. and adding the result to the value in the IDTR.
5.

Transfers control to the interrupt handler referenced by the CS:1Pin the IDT.

Figure 8-7 on page 253 shows the stack after control istransferred to the interrupt handler in real
mode.

252

[AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Interrupt-Handler and
Interrupted-Program
Stack

Return FLAGS | +4
Return CS +2

Return IP j¢&—— SS:SP

Figure 8-7. Stack After Interrupt in Real Mode

AnIRET instruction is used to return to the interrupted program. When an IRET is executed, the
processor performsthe following:

1. Popsthe saved CS value off the stack and into the CS register. The saved IP value is popped into
RIP[15:0].

2. Popsthe FLAGS value off of the stack and into EFLAGS[15:0].
3. Execution begins at the saved CS.1P location.

8.7 Legacy Protected-Mode Interrupt Control Transfers

In protected mode, the interrupt mechanism transfers control to an exception or interrupt handler
through gate descriptors. In protected mode, the IDT is atable of 8-byte gate entries, one for each of
the 256 possibleinterrupt vectorsimplemented by the system. Three gate typesare allowed inthe IDT:
* Interrupt gates.

* Trap gates.

* Task gates.

If areferenceis made to any other descriptor typeinthe DT, ageneral-protection exception (#GP)
OCCUrS.

Interrupt-gate control transfers are similar to CALL s and IMPsthrough call gates. The interrupt
mechanism uses gates (interrupt, trap, and task) to establish protected entry-points into the exception
and interrupt handlers.

The remainder of this chapter discusses control transfers through interrupt gates and trap gates. If the
gate descriptor inthe IDT isatask gate, a TSS-segment selector isreferenced, and atask switch

Exceptions and Interrupts [AM D PUb“C Use] 253

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

occurs. See Chapter 12, “Task Management,” for more information on the hardware task-switch
mechanism.

8.7.1 Locating the Interrupt Handler

When an exception or interrupt occurs, the processor scales the interrupt vector number by eight and
uses the result as an offset into the IDT. If the gate descriptor referenced by the IDT offset isan
interrupt gate or atrap gate, it contains a segment-sel ector and segment-offset field (see Section
“Legacy Segment Descriptors’ on page 84 for adetailed description of the gate-descriptor format and
fields). These two fields perform the same function as the pointer operand in afar control-transfer
instruction. The gate-descriptor segment-selector field points to the target code-segment descriptor
located in either the GDT or LDT. The gate-descriptor segment-offset field is the instruction-pointer
offset into the interrupt-handler code segment. The code-segment base taken from the code-segment
descriptor is added to the gate-descriptor segment-offset field to create the interrupt-handler virtual
address (linear address).

Figure 8-8 on page 255 shows how the protected-mode interrupt handler islocated by the interrupt
mechanism.

254 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Interrupt
Descriptor Table

(S Selector DPL

____________________________ Interrupt Vector
Code-Segment Offset Cz
< +
8

« IDT Base Address ¢ IDT Limit

Interrupt-Descriptor-Table Register

Virtual-Address
Space

Global or Local
Descriptor Table

CSLimit ! DPL:
............................ Code Segment
Code-Segment Base

v

v

Figure 8-8. Protected-Mode Interrupt Control Transfer

8.7.2 Interrupt To Same Privilege

When acontrol transfer to an exception or interrupt handler at the same privilegelevel occurs (through
an interrupt gate or atrap gate), the processor performs the following:

1. Pushesthe EFLAGS register onto the stack.
2. Clearsthe TF, NT, RF, and VM bitsin EFLAGSto O.

Exceptions and Interrupts [AM D PUb“C Use] 255

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

3. The processor handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF iscleared to 0.
- If the gate descriptor isatrap gate, EFLAGS.IF is not modified.

4. Savesthereturn CSregister and EIP register (RIP[31:0]) by pushing them onto the stack. The CS
value is padded with two bytes to form a doubleword.

If the interrupt has an associated error code, the error code is pushed onto the stack.

6. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

7. Theinterrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-9 shows the stack after control istransferred to the interrupt handler.

Interrupt-Handler and
Interrupted Program

With Error Code Stack With No Error Code

Return EFLAGS +12

Return CS| +8 Return EFLAGS +8
Return EIP +4 Return CS|| +4
Error Code «— SS:ESP Return EIP 4—SS:ESP

Figure 8-9. Stack After Interrupt to Same Privilege Level

8.7.3 Interrupt To Higher Privilege
When a control transfer to an exception or interrupt handler running at a higher privilege occurs
(numerically lower CPL value), the processor performs a stack switch using the following steps:

1. Thetarget CPL isread by the processor from the target code-segment DPL and used as an index
into the TSS for selecting the new stack pointer (SS:ESP). For example, if the target CPL is 1, the
processor selects the SS:ESP for privilege-level 1 from the TSS.

2. Pushesthe return stack pointer (old SS:ESP) onto the new stack. The SSvalue is padded with two
bytes to form a doubleword.

3. Pushesthe EFLAGS register onto the new stack.
4. Clearsthefollowing EFLAGS bitsto O0: TF, NT, RF, and VM.

256 [AMD PUbllC Use] Exceptions and Interrupts

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
5. The processor handles the EFLAGS.IF bit based on the gate-descriptor type:

9.

- If the gate descriptor is an interrupt gate, EFLAGS.IF iscleared to 0.
- If the gate descriptor isatrap gate, EFLAGS.IF is not modified.

Saves the return-address pointer (CS.EIP) by pushing it onto the stack. The CS value is padded
with two bytes to form a doubleword.

If the interrupt vector number has an error code associated with it, the error code is pushed onto
the stack.

The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

The interrupt handler begins executing with the instruction referenced by new CS.EIP.

Figure 8-10 shows the new stack after control istransferred to the interrupt handler.

Interrupt-Handler Stack

With Error Code With No Error Code

| Return SS || +20

Return ESP +16 | Return SS | +16
Return EFLAGS +12 Return ESP +12
| Retum Cs | + Return EFLAGS | +8
Return EIP +4 | Return CS | +4
Error Code — New SS:ESP Return EIP «— New SS:ESP

Figure 8-10. Stack After Interrupt to Higher Privilege

8.7.4 Privilege Checks

Before loading the CS register with the interrupt-handler code-segment selector (located in the gate
descriptor), the processor performs privilege checks similar to those performed on call gates. The
checks are performed when either conforming or nonconforming interrupt handlers are referenced:

1

The processor reads the gate DPL from the interrupt-gate or trap-gate descriptor. The gate DPL is
the minimum privilege-level (numerically-highest value) needed by a program to access the gate.
The processor compares the CPL with the gate DPL. The CPL must be numerically less-than or
equal-to the gate DPL for this check to pass.

Exceptions and Interrupts [AM D PUb“C Use] 257

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

2. The processor compares the CPL with the interrupt-handler code-segment DPL. For this check to
pass, the CPL must be numerically greater-than or equal-to the code-segment DPL. This check
prevents control transfers to less-privileged interrupt handlers.

Unlike call gates, no RPL comparison takes place. Thisis because the gate descriptor isreferenced in
the IDT using the interrupt vector number rather than a selector, and no RPL field existsin the
interrupt vector number.

Exception and interrupt handlers should be made reachable from software running at any privilege
level that requiresthem. If the gate DPL valueistoo low (requiring more privilege), or the interrupt-
handler code-segment DPL istoo high (runs at lower privilege), the interrupt control transfer can fail
the privilege checks. Setting the gate DPL=3 and interrupt-handler code-segment DPL=0 makes the
exception handler or interrupt handler reachable from any privilege level.

Figure 8-11 on page 259 shows two examples of interrupt privilege checks. In Example 1, both

privilege checks pass:

» The interrupt-gate DPL is at the lowest privilege (3), which means that software running at any
privilege level (CPL) can access the interrupt gate.

» Theinterrupt-handler code segment is at the highest-privilege level, as indicated by DPL=0. This
means software running at any privilege can enter the interrupt handler through the interrupt gate.

258 [AMD PUbllC Use] Exceptions and Interrupts

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology
cs CPL=2
Interrupt Vector Access
Allowed
Pl 1 Access Allowed
Interrupt
Handler

>
Gate Descriptor

DPL=0

Access
Allowed

Code Descriptor

Example 1: Privilege Check Passes

cs CPL=2
Interrupt Vector Access
.|, Denied
¢

oo @..-A@?S_S_P?nl?é__,
. Interrupt

4 X Handler

Gate Descriptor L
Access
Denied

|
>

DPL=3

Code Descriptor

Example 2: Privilege Check Fails

Figure 8-11. Privilege-Check Examples for Interrupts

In Example 2, both privilege checksfail:

» The interrupt-gate DPL specifies that only software running at privilege-level 0 can access the
gate. The current program does not have a high enough privilege level to access the interrupt gate,
sinceitsCPL isset at 2.

Exceptions and Interrupts [AM D PUb“C Use] 259

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

» Theinterrupt handler hasalower privilege (DPL=3) than the currently-running software (CPL=2).
Transitions from more-privileged software to less-privileged software are not allowed, so this
privilege check failsaswell.

Although both privilege checksfail, only one such failureis required to deny access to the interrupt
handler.

8.7.5 Returning From Interrupt Procedures

A return to an interrupted program should be performed using the IRET instruction. An IRET isafar
return to a different code segment, with or without achangein privilegelevel. The actions of an IRET
in both cases are described in the following sections.

IRET, Same Privilege. Before performing the IRET, the stack pointer must point to the return EIP. If
there was an error code pushed onto the stack asaresult of the exception or interrupt, that error code
should have been popped off the stack earlier by the handler. The IRET reverses the actions of the
interrupt mechanism:

1. Pops the return pointer off of the stack, loading both the CS register and EIP register (RIP[31:0])
with the saved values. The return code-segment RPL is read by the processor from the CS value
stored on the stack to determine that an equal-privilege control transfer is occurring.

2. Popsthe saved EFLAGS image off of the stack and into the EFLAGS register.

3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the return program must be at alower
privilege than the interrupt handler. The IRET in this case causes a stack switch to occur:

1. The return pointer is popped off of the stack, loading both the CS register and EIP register
(RIP[31:0]) with the saved values. The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that alower-privilege control transfer is occurring.

2. The saved EFLAGS image is popped off of the stack and loaded into the EFL AGS register.

3. Thereturn-program stack pointer is popped off of the stack, loading both the SS register and ESP
register (RSP[31:0]) with the saved values.

4. Control istransferred to the return program at the target CS:EIP.

8.7.6 Shadow Stack Support for Interrupts and Exceptions

The operation of the shadow stack for an interrupt control transfer dependswhether or not the interrupt
handler runs at the same privilege or at ahigher privilege level than the CPL when the interrupt or
exception occurred.

Interrupt Control Transfer to Same Privilege Level. When acontrol transfer to ainterrupt handler
at the same privilege occurs, and the shadow stack featureis enabled for the current CPL, the processor
pushes the interrupted procedure's CS and LIP (CS.base + EIP) onto the current shadow stack.

260 [AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Interrupt Control Transfer to Higher Privilege Level. When acontrol transfer to ainterrupt
handler at a higher privilege occurs, the actions taken by the processor depend on the CPL when the
interrupt or exception occurred.

e« IftheCPL =3:
- if shadow stacks are enabled in user-mode, the current SSPis saved to MSR PL3_SSP,

- if shadow stacks are enabled in supervisor mode, anew SSPisloaded from MSR PLn_SSP (where
n=thetarget CPL O, 1 or 2).

- the shadow stack token located at the base of the new shadow stack is checked, and if valid, the
token'sbusy bitisset to 1.

Note: the CSand LIP are not pushed onto the new shadow stack.
* Ifthe CPL =1 or 2, and shadow stacks are enabled in supervisor mode:

- the new SSPisloaded from MSR PLn_SSP (where n = the target CPL O or 1).

- the shadow stack token located at the base of the new shadow stack is checked, and if valid, the
token'sbusy bit isset to 1.

- the CS, LIPand old SSP are pushed onto the new shadow stack.
For adetailed description of shadow stack operations, see Section “ Shadow Stacks’ on page 619.

8.8 Virtual-8086 Mode Interrupt Control Transfers

This section describes interrupt control transfers as they relate to virtual-8086 mode. Virtual-8086
mode is not supported by long mode. Therefore, the control-transfer mechanism described here is not
applicable to long mode.

When a software interrupt occurs (not external interrupts, INT1, or INT3) while the processor is
running in virtual-8086 mode (EFLAGS.VM=1), the control transfer that occurs depends on three
system controls:

« EFLAGSIOPL—This field controls interrupt handling based on the CPL. See Section “1/O
Privilege Level Field (IOPL) Field” on page 54 for more information on thisfield.

Setting |OPL <3 redirects the interrupt to the general-protection exception (#GP) handler.

e CR4AVME—This bit enables virtual-mode extensions. See Section “Virtual-8086 Mode
Extensions (VME)” on page 48 for more information on this bit.

» TSSInterrupt-Redirection Bitmap—The TSS interrupt-redirection bitmap contains 256 bits, one
for each possible INTn vector (software interrupt). When CR4.VME=1, the bitmap is used by the
processor to direct interrupts to the handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-system interrupt handler (bitmap entry is
1). See Section “Legacy Task-State Segment” on page 351 for information on the location of this
field within the TSS.

Exceptions and Interrupts [AM D PUb“C Use] 261

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

If IOPL<3, CR4.VME=1, and the corresponding interrupt redirection bitmap entry is 0, the processor
uses the virtual-interrupt mechanism. See Section “Virtual Interrupts’ on page 271 for more
information on this mechanism.

Table 8-11 summarizes the actions of the above system controls on interrupts taken when the
processor isrunning in virtual-8086 mode.

Table 8-11. Virtual-8086 Mode Interrupt Mechanisms

TSSInterrupt
EFLAGS.I0OPL CR4VME Redirection Interrupt Mechanism
Bitmap Entry
0 J—
General-Protection Exception
0,10r2 1 1
1 0 Virtual Interrupt
0 —
Protected-Mode Handler
3 1 1
1 Virtual 8086 Handler

8.8.1 Protected-Mode Handler Control Transfer

Control transfersto protected-mode handlers from virtual-8086 mode differ from standard protected-
mode transfersin several ways. The processor follows these steps in making the control transfer:

1. Readsthe CPL=0 stack pointer (SS:ESP) from the TSS.

2. Pushes the GS, FS, DS, and ES selector registers onto the stack. Each push is padded with two
bytes to form a doubleword.

3. Clearsthe GS, FS, DS, and ES selector registers to 0. This places a null selector in each of the
four registers

4. Pushesthereturn stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

Pushes the EFLAGS register onto the new stack.
6. Clearsthefollowing EFLAGS bitsto O: TF, NT, RF, and VM.

Handles EFL AGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF iscleared to O.
- If the gate descriptor isatrap gate, EFLAGS.IF is not modified.

8. Pushesthe return-address pointer (CS:EIP) onto the stack. The CS value is padded with two bytes
to form a doubleword.

9. If theinterrupt has an associated error code, pushes the error code onto the stack.

10. Loads the segment-sel ector field from the gate descriptor into the CS register, and loads the offset
field from the gate descriptor into the EIP register.

262 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

11. Begins execution of the interrupt handler with the instruction referenced by the new CS.EIP.

Figure 8-12 showsthe new stack after control istransferred to the interrupt handler with an error code.

Interrupt-Handler Stack

With Error Code With No Error Code

Return GS| +36
Return FS | +32 Return GS | +32
Return DS| +28 Return FS | +28
Return ES | +24 Return DS | +24
Return SS | +20 Return ES | +20

Return ESP +16 Return SS | +16

Return EFLAGS +12 Return ESP +12

Return CS | +8 Return EFLAGS +8

Return EIP +4 Return CS | +4

Error Code <+— New SS:ESP Return EIP <+— New SS:ESP

(From TSS, CPL=0)

Figure 8-12. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to virtual-8086 mode reverses the stack-
build process. After the return pointer, EFLAGS, and return stack-pointer are restored, the processor
restoresthe ES, DS, FS, and GSregisters by popping their values off the stack.

8.8.2 Virtual-8086 Handler Control Transfer

When a control transfer to an 8086 handler occurs from virtual-8086 mode, the processor creates an
interrupt-handler stack identical to that created when an interrupt occursin real mode (see Figure 8-7
on page 253). The processor performs the following actions during a control transfer:

1. Pushesthe FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clearsthe EFLAGS.IF and EFLAGS.RF bitsto O.

3. Savesthe CSregister and IPregister (RIP[15:0]) by pushing them onto the stack.
4

. Locates the interrupt-handler pointer (CS:1P) in the 8086 IDT by scaling the interrupt vector by
four and adding the result to the virtual (linear) address 0. The valuein the IDTR is not used.

5. Transfers control to the interrupt handler referenced by the CS:IPin the IDT.
AnIRET from the 8086 handler back to virtual-8086 mode reverses the stack-build process.

Exceptions and Interrupts [AM D PUb“C Use] 263

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

8.9 Long-Mode Interrupt Control Transfers

The long-mode architecture expands the legacy interrupt-mechanism to support 64-bit operating
systems and applications. These changes include:

* All interrupt handlers are 64-bit code and operate in 64-bit mode.
* Thesizeof aninterrupt-stack push isfixed at 64 bits (8 bytes).
* Theinterrupt-stack frameisaligned on a 16-byte boundary.

» Thestack pointer, SS:RSP, is pushed unconditionally on interrupts, rather than conditionally based
onachangein CPL.

» The SSselector register isloaded with anull selector asaresult of an interrupt, if the CPL changes.

» TheIRET instruction behavior changes, to unconditionally pop SS:RSP, allowing a null SSto be
popped.
* A new interrupt stack-switch mechanism, called the interrupt-stack table or IST, isintroduced.

» When shadow stacks are enabled, a new shadow stack-switch mechanism, called the Interrupt SSP
Table or ISST, isintroduced.

8.9.1 Interrupt Gates and Trap Gates

Only long-mode interrupt and trap gates can be referenced in long mode (64-bit mode and
compatibility mode). The legacy 32-bit interrupt-gate and 32-bit trap-gate types (OEh and OFh, as
described in Section “ System Descriptors’ on page 94) are redefined in long mode as 64-bit interrupt-
gate and 64-hit trap-gate types. 32-bit and 16-bit interrupt-gate and trap-gate types do not exist inlong
mode, and software is prohibited from using task gates. If areferenceis madeto any gate other than a
64-bit interrupt gate or a64-bit trap gate, a general-protection exception (#GP) occurs.

Thelong-mode gate types are 16 bytes (128 bits) long. They are an extension of the legacy-mode gate
types, alowing afull 64-bit segment offset to be stored in the descriptor. See Section “Legacy
Segment Descriptors’ on page 84 for a detailed description of the gate-descriptor format and fields.

8.9.2 Locating the Interrupt Handler

When an interrupt occursin long mode, the processor multipliesthe interrupt vector number by 16 and
uses the result as an offset into the IDT. The gate descriptor referenced by the IDT offset contains a
segment-selector and a 64-bit segment-offset field. The gate-descriptor segment-offset field contains
the complete virtual address for the interrupt handler. The gate-descriptor segment-selector field
pointsto the target code-segment descriptor located in either the GDT or LDT. The code-segment
descriptor isonly used for privilege-checking purposes and for placing the processor in 64-bit mode.
The code segment-descriptor basefield, limit field, and most attributes are ignored.

Figure 8-13 shows how the long-mode interrupt handler islocated by the interrupt mechanism.

264 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Interrupt-Descriptor

Table
________ Code-Segment Offset Interrupt Vector
CS Selector ' DPL!
< +
16
< IDT Base Address IDT Limit
Global- or Local- Interrupt-Descriptor-Table Register
Descriptor Table
Virtual-Address
Space
CSlimit 'DPL:
- Code-Segment Base
»| ... nterupt Handler

Figure 8-13. Long-Mode Interrupt Control Transfer

8.9.3 Interrupt Stack Frame

In long mode, the return-program stack pointer (SS:RSP) is always pushed onto the interrupt-handler
stack, regardless of whether or not a privilege change occurs. Although the SS register isnot used in
64-bit mode, SSis pushed to allow returnsinto compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-frame size for al interrupts, except for
error codes. Interrupt service-routine entry points that handle interrupts generated by non-error-code
interrupts can push an error code on the stack for consistency.

In long mode, when a control transfer to an interrupt handler occurs, the processor performs the
following:

Exceptions and Interrupts [AM D PUb“C Use] 265

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

1. Alignsthe new interrupt-stack frame by masking RSP with FFFF_FFFF_FFFF_FFFOh.
2. IfIST field in interrupt gate is not O, reads | ST pointer into RSP,
3. If aprivilege change occurs, the target DPL is used as an index into the long-mode TSS to select a

new stack pointer (RSP).

4. If aprivilege change occurs, SSis cleared to zero indicating a null selector.

Pushes the return stack pointer (old SS:RSP) onto the new stack. The SS value is padded with six
bytes to form a quadword.

Pushes the 64-bit RFLAGS register onto the stack. The upper 32 bits of the RFLAGS image on
the stack are written as zeros.

7. Clearsthe TF, NT, and RF bitsin RFLAGS bitsto 0.
8. Handlesthe RFLAGS.IF bit according to the gate-descriptor type:

10.

11.

12.

- If the gate descriptor is an interrupt gate, RFLAGS.IF is cleared to 0.
- If the gate descriptor is atrap gate, RFLAGS.IF is not modified.

Pushes the return CS register and RIP register onto the stack. The CS value is padded with six
bytes to form a quadword.

If the interrupt vector number has an error code associated with it, pushes the error code onto the
stack. The error code is padded with four bytes to form a quadword.

Loads the segment-selector field from the gate descriptor into the CS register. The processor
checks that the target code-segment is a 64-bit mode code segment.

Loads the offset field from the gate descriptor into the target RIP. The interrupt handler begins
execution when control is transferred to the instruction referenced by the new RIP.

Figure 8-14 on page 267 shows the stack after control istransferred to the interrupt handler.

266 [AMD PUbllC Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Interrupt-Handler Stack
With Error Code With No Error Code

| Return SS §+40

Return RSP +32 Return SS §+32
Return RFLAGS +24 Return RSP +24
| Return CS | +16 Return RFLAGS +16
Return RIP +8 Return CS | +8
| Eorcode Jersp Return RIP — RSP

Figure 8-14. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. Inlegacy mode, theinterrupt-stack pointer can be aligned at any address
boundary. Long mode, however, aligns the stack on a 16-byte boundary. Thisalignment is performed
by the processor in hardware before pushing items onto the stack frame. The previous RSPis saved
unconditionally on the new stack by the interrupt mechanism. A subsequent IRET instruction
automatically restores the previous RSP.

Aligning the stack on a 16-byte boundary allows optimal performance for saving and restoring the 16-
byte XMM registers. Theinterrupt handler can save and restore the XMM registers using the faster 16-
byte aligned loads and stores (MOVAPS), rather than unaligned loads and stores (MOV UPS).
Although the RSP alignment is always performed in long mode, it isonly of consequence when the
interrupted program is already running at CPL=0, and it is generally used only within the operating-
system kernel. The operating system should put 16-byte aligned RSP valuesin the TSSfor interrupts
that change privilege levels.

Stack Switch. Inlong mode, the stack-switch mechanism differs dightly from the legacy stack-
switch mechanism (see Section “Interrupt To Higher Privilege” on page 256). When stacks are
switched during along-mode privilege-level change resulting from an interrupt, anew SSdescriptor is
not loaded from the TSS. Long mode only loads an inner-level RSP from the TSS. However, the SS
selector isloaded with anull selector, allowing nested control transfers, including interrupts, to be
handled properly in 64-bit mode. The SS.RPL is set to the new CPL value. See Section “Nested IRETs
to 64-Bit Mode Procedures’ on page 270 for additional information.

Exceptions and Interrupts [AM D PUb“C Use] 267

AMDA1
AMDG64 Technology

24593—Rev. 3.36—0ctober 2020

Theinterrupt-handler stack that results from a privilege changein long mode looks identical to along-
mode stack when no privilege change occurs. Figure 8-15 shows the stack after the switch is
performed and control istransferred to the interrupt handler.

Interrupt-Handler Stack
With Error Code Without Error Code
| Return SS §+40
Return RSP +32 Return SS §+32
Return RFLAGS +24 Return RSP +24
| Return €5 | +16 Return RFLAGS +6
Return RIP +8 Return CS §+8
| Error Code <+—New RSP Return RIP 4—New RSP
(from TSS) (from TSS)
SS=0 S5=0
(if CPL changes) (if CPL changes)
Figure 8-15. Long-Mode Stack After Interrupt—Higher Privilege

8.9.4 Interrupt-Stack Table

Inlong mode, anew interrupt-stack table (IST) mechanism isintroduced as an alternative to the
modified legacy stack-switch mechanism described above. The ST mechanism provides amethod for
specific interrupts, such as NMI, double-fault, and machine-check, to aways execute on a known-
good stack. In legacy mode, interrupts can use the hardware task-switch mechanism to set up aknown-
good stack by accessing the interrupt service routine through atask gate located in the IDT. However,
the hardware task-switch mechanism is not supported in long mode.

When enabled, the ST mechanism unconditionally switches stacks. It can be enabled on an individual
interrupt vector basisusing anew fieldinthe IDT gate-descriptor entry. Thisallows someinterruptsto
use the modified legacy mechanism, and othersto usethe |ST mechanism. The IST mechanismisonly
availablein long mode.

The IST mechanism uses new fieldsin the 64-bit TSS format and the long-mode interrupt-gate and
trap-gate descriptors:

» Figure 12-8 on page 357 shows the format of the 64-bit TSS and the location of the seven IST
pointers. The 64-bit TSS offsets from 24h to 5Bh provide space for seven IST pointers, each of
which are 64 bits (8 bytes) long.

268 Exceptions and Interrupts

[AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Thelong-mode interrupt-gate and trap-gate descriptors define a 3-bit | ST-index field in bits 2:0 of
byte +4. Figure 4-24 on page 97 shows the format of long-mode interrupt-gate and trap-gate
descriptors and the location of the IST-index field.

To enable the I ST mechanism for a specific interrupt, system software stores a non-zero value in the
interrupt gate-descriptor | ST-index field. If the IST index is zero, the modified legacy stack-switching
mechanism (described in the previous section) is used.

Figure 8-16 shows how the IST mechanism is used to create the interrupt-handler stack. When an
interrupt occurs and the I ST index is non-zero, the processor uses theindex to select the corresponding
IST pointer from the TSS. The IST pointer isloaded into the RSP to establish a new stack for the
interrupt handler. The SSregister isloaded with anull selector if the CPL changes and the SS.RPL is
set to the new CPL value. After the stack isloaded, the processor pushesthe old stack pointer,
RFLAGS, the return pointer, and the error code (if applicable) onto the stack. Control isthen
transferred to the interrupt handler.

64-Bit
Interrupt-Handler Stack

|Return SS §+40

64-Bit TSS Return RSP +32

Return RFLAGS +24

Long-Mode |Return CS|+16
Interrupt- or Trap- Return RIP 8 $5=0

Gate Descriptor -
> BT 517 | Error Code 4—| RSP I
A
_|5T RSPO : RSP2

Figure 8-16. Long-Mode IST Mechanism

Software must make sure that an interrupt or exception handler using an IST pointer doesn't take
another exception using the same I ST pointer, asthiswill result in thefirst stack exception frame being
overwritten.

Exceptions and Interrupts [AM D PUb“C Use] 269

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

8.4.9.1 Interrupt Shadow Stack Table.

When the shadow stack feature is enabled in long mode (EFER.LMA=1), amechanism similar to the
IST isprovided to switch shadow stacks. This mechanism, the Interrupt Shadow Stack Table (ISST) is
described in Section “ Shadow Stacks’ on page 619.

8.9.5 Returning From Interrupt Procedures

Aswith legacy mode, areturn to an interrupted program in long mode should be performed using the
IRET instruction. However, in long mode, the IRET semantics are different from legacy mode:

* In 64-bit mode, IRET pops the return-stack pointer unconditionally off the interrupt-stack frame
and into the SS:RSP registers. This reverses the action of the long-mode interrupt mechanism,
which saves the stack pointer whether or not a privilege change occurs. IRET aso alows a null
selector to be popped off the stack and into the SS register. See Section “Nested IRETS to 64-Bit
Mode Procedures’ on page 270 for additional information.

* In compatibility mode, IRET behaves as it does in legacy mode. The SS:ESP is popped off the
stack only if acontrol transfer to less privilege (numerically greater CPL) is performed. Otherwise,
it isassumed that a stack pointer isnot present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack when saving values for the interrupt
handler, and the interrupt handler is always entered in 64-bit mode. To work properly, an IRET used to
exit the 64-bit mode interrupt-handler requires a series of eight-byte pops off the stack. Thisis
accomplished by using a 64-bit operand-size prefix with the IRET instruction. The default stack size
assumed by an IRET in 64-bit modeis 32 bits, so a64-bit REX prefix is needed by 64-bit mode
interrupt handlers.

Nested IRETs to 64-Bit Mode Procedures. Inlong mode, aninterrupt causes anull selector to be
loaded into the SSregister if the CPL changes (thisisthe same action taken by afar CALL inlong
mode). If theinterrupt handler performsafar call, or isitself interrupted, the null SS selector is pushed
onto the stack frame, and another null selector isloaded into the SSregister. Using anull selector in
thisway allows the processor to properly handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle nested returns to 64-bit mode (which do not
use the SSregister), and returns to compatibility mode (which do use the SSregister). Normally, an
IRET that pops anull selector into the SSregister causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the existence of nested interrupt handlers
and/or privileged software in 64-bit mode. Long mode allows an IRET to pop anull selector into SS
from the stack under the following conditions:

* Thetarget modeis 64-bit mode.
* Thetarget CPL<3.

In this case, the processor does not load an SS descriptor, and the null selector isloaded into SS
without causing a#GP exception.

270 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

8.10 Virtual Interrupts

The term virtual interrupts includes two classes of extensionsto the interrupt-handling mechanism:

* \irtual-8086 Mode Extensions (VME)—These allow virtual interrupts and interrupt redirection in
virtual-8086 mode. VME has no effect on protected-mode programs.

» Protected-Mode Virtual Interrupts (PVI)—These allow virtual interrupts in protected mode when
CPL=3. Interrupt redirection is not available in protected mode. PV1 has no effect on virtual-8086-
mode programs.

Because virtual-8086 mode is not supported in long mode, VME extensions are not supported in long
mode. PV extensions are, however, supported in long mode.

8.10.1 Virtual-8086 Mode Extensions

The virtual-8086-mode extensions (VME) enable performance enhancements for 8086 programs
running as protected tasks in virtual-8086 mode. These extensions are enabled by setting CR4.VME
(bit 0) to 1. The extensions enabled by CR4.VME are:

» Virtualizing control and notification of maskable external interrupts with the EFLAGS VIF (bit
19) and VIP (bit 20) bits.

» Selective interception of software interrupts (INTn instructions) using the TSS interrupt
redirection bitmap (IRB).

Background. Legacy-8086 programs expect to have full accessto the EFLAGS interrupt flag (1F)
bit, allowing programsto enable and disable maskabl e external interrupts. When those programsrunin
virtual-8086 mode under amultitasking protected-mode environment, it can disrupt the operating
system if programs enable or disable interruptsfor their own purposes. Thisis particularly trueif
interrupts associated with one program can occur during execution of another program. For example, a
program could request that an area of memory be copied to disk. System software could suspend the
program before external hardware uses an interrupt to acknowledge that the block has been copied.
System software could subsequently start a second program which enables interrupts. This second
program could receive the external interrupt indicating that the memory block of thefirst program has
been copied. If that were to happen, the second program would probably be unprepared to handle the
interrupt properly.

Accessto the IF bit must be managed by system software on atask-by-task basisto prevent corruption
of system resources. In order to completely manage the I F bit, system software must be able to
interrupt all instructionsthat can read or write the bit. These instructionsinclude STI, CLI, PUSHF,
POPF, INTn, and IRET. These instructions are part of an instruction classthat is|OPL-sensitive. The
processor takes a general-protection exception (#GP) whenever an |OPL-sensitiveinstructionis
executed and the EFLAGS.IOPL field islessthan the CPL. Because al virtual-8086 programsrun at
CPL=3, system software can interrupt all instructions that modify the IF bit by setting |OPL<3.

Exceptions and Interrupts [AM D PUbllC Use] 271

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

System software maintains avirtual image of the IF bit for each virtual-8086 program by emulating
the actions of |OPL-sensitive instructions that modify the IF bit. When an external maskable-interrupt
occurs, system software checksthe state of the IF image for the current virtual-8086 program to
determine whether the program is masking interrupts. If the program is masking interrupts, system
software saves the interrupt information until the virtual-8086 program attempts to re-enable
interrupts. When the virtual-8086 program unmasks interrupts with an 1OPL -sensitive instruction,
system software traps the action with the #GP handler.

The performance of aprocessor can be significantly degraded by the overhead of trapping and
emulating |OPL-sensitive instructions, and the overhead of maintaining images of the IF bit for each
virtual-8086 program. This performance |oss can be eliminated by running virtual-8086 programs
with lOPL set to 3, thus allowing changesto the real IF flag from any privilegelevel. Unfortunately,
this can leave critical system resources unprotected.

In addition to the performance problems caused by virtualizing the IF bit, software interrupts (INTn
instructions) cannot be masked by the IF bit or virtual copies of the IF bit. The IF bit only affects
maskable external interrupts. Software interruptsin virtual-8086 mode are normally directed to the
real mode interrupt vector table (IVT), but it can be desirable to redirect certain interruptsto the
protected-mode interrupt-descriptor table (IDT).

The virtual-8086-mode extensions are designed to support both external interrupts and software
interrupts, with mechanisms that preserve high performance without compromising protection.
Virtualization of external interruptsis supported using two bitsin the EFLAGS register: the virtual -
interrupt flag (VIF) bit and the virtual-interrupt pending (VIP) bit. Redirection of softwareinterruptsis
supported using the interrupt-redirection bitmap (IRB) in the TSS. A separate TSS can be created for
each virtual-8086 program, allowing system software to control interrupt redirection independently
for each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions are enabled, the IF-
modifying instructions normally trapped by system software are allowed to execute. However, instead
of modifying the IF bit, they modify the EFLAGS VIF bit. Thisleaves control over maskable
interruptsto the system software. It can also be used as an indicator to system software that the virtual-
8086 programis ableto, or is expecting to, receive externa interrupts.

When an unmasked external interrupt occurs, the processor transfers control from the virtual-8086
program to a protected-mode interrupt handler. If the interrupt handler determines that the interrupt is
for the virtual-8086 program, it can check the state of the VIF bit in the EFL AGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set (indicating the virtual-8086 program attempted
to unmask interrupts), system software can allow the interrupt to be handled by the appropriate virtual -
8086 interrupt handler.

If the VIF bit isclear (indicating the virtual-8086 program attempted to mask interrupts) and the
interrupt isfor the virtual-8086 program, system software can hold the interrupt pending. System
software holds an interrupt pending by saving appropriate information about the interrupt, such asthe
interrupt vector, and setting the virtual-8086 program's VIP bit in the EFLAGS image on the stack.
When the virtual-8086 program later attemptsto set IF, the previously set VIP bit causes a general-

272 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

protection exception (#GP) to occur. System software can then pass the saved interrupt information to
the virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled (CR4.VME=1), theVIF and VIPbits are set and
cleared asfollows:

* VIF Bit—This hit is set and cleared by the processor in virtual-8086 mode in response to an
attempt by a virtual-8086 program to set and clear the EFLAGS.IF bit. VIF is used by system
software to determine whether a maskable external interrupt should be passed on to the virtual-
8086 program, emulated by system software, or held pending. VIF is also cleared during software
interrupts through interrupt gates, with the original VIF value preserved in the EFLAGS image on
the stack.

* VIP Bit—System software sets and clearsthis bit in the EFLAGS image saved on the stack after an
interrupt. It can be set when an interrupt occursfor avirtual-8086 program that has a clear VIF bit.
The processor examines the VIP bit when an attempt is made by the virtual-8086 program to set
the IF bit. If VIPis set when the program attempts to set |F, a general-protection exception (#GP)
occurs before execution of the IF-setting instruction. System software must clear VIP to avoid
repeated #GP exceptions when returning to the interrupted instruction.

TheVIF and VIP bits can be used by system software to minimize the overhead associated with
managing maskabl e external interrupts because virtual copies of the IF flag do not haveto be
maintained by system software. Instead, VIF and VIP are maintained during context switches along
with the remaining EFLAGS bits.

Table 8-12 on page 275 shows how the behavior of instructions that modify the I F bit are affected by
the VME extensions.

Interrupt Redirection of Software Interrupts. Invirtual-8086 mode, software interrupts (INTn
instructions) are trapped using a#GP exception handler if the IOPL islessthan 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and emulate 8086-interrupt handlers. System
software can set the IOPL to 3, inwhich casethe INTninstruction isvectored through a gate descriptor
in the protected-mode IDT. System software can use the gate to control accessto the virtual-8086
mode interrupt vector table (IVT), or to redirect the interrupt to a protected-mode interrupt handler.

When VME extensions are enabled, for INTn instructions to execute normally, vectoring directly to a
virtual-8086 interrupt handler through the virtual-8086 IV T (located at address 0 in the virtual-address
space of thetask). For security or performance reasons, however, it can be necessary to intercept INTn
instructions on avector-specific basisto allow servicing by protected-mode interrupt handlers. Thisis
performed by using the interrupt-redirection bitmap (IRB), located in the TSS and enabled when
CR4.VME=1. TheIRB isavailable only in virtual-8086 mode.

Figure 12-6 on page 352 showsthe format of the TSS, with the interrupt redirection bitmap located
near the top. The IRB contains 256 bits, one for each possible software-interrupt vector. The most-
significant bit of the IRB controlsinterrupt vector 255, and islocated immediately before the |IOPB
base. The least-significant bit of the IRB controls interrupt vector 0.

The bitsin the IRB function asfollows:

Exceptions and Interrupts [AM D PUb“C Use] 273

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

* When set to 1, the INTn instruction behaves as if the VME extensions are not enabled. The
interrupt is directed through the IDT to a protected-mode interrupt handler if IOPL=3. If IOPL<3,
the INTn causes a#GP exception.

* When cleared to O, the INTn instruction is directed through the IVT for the virtual-8086 program
to the corresponding virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB mechanism. External interrupts are
asynchronous events that occur outside the context of avirtual-8086 program. Therefore, externa
interrupts require system-software intervention to determine the appropriate context for the interrupt.
The VME extensions described in Section “VIF and VIP Extensions for External Interrupts’ on

page 272 are provided to assist system software with external-interrupt intervention.

8.10.2 Protected Mode Virtual Interrupts

The protected-mode virtual-interrupt (PV1) bit in CR4 enables support for interrupt virtualization in
protected mode. When enabled, the processor maintains program-specific VIF and VIP bits similar to
the manner defined by the virtual-8086 mode extensions (VME). However, unlike VME, only the ST
and CLI instructions are affected by the PV extension. When a program isrunning at CPL=3, it can
use STI and CLI to set and clear its copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-12 on page 275 describes the behavior of instructions that
modify the IF bit when PV extensions are enabled.

Theinterrupt redirection bitmap (IRB) defined by the VME extensionsis not supported by the PV
extensions.

8.10.3 Effect of Instructions that Modify EFLAGS.IF

Table 8-12 on page 275 shows how the behavior of instructions that modify the IF bit are affected by
the VME and PV1 extensions. The table columns specify the following:

* Operating Mode—the processor mode in effect when the instruction is executed.
e Instruction—the IF-modifying instruction.

e |OPL—thevalue of the EFLAGS.IOPL field.

e VIP—thevalue of the EFLAGS.VIPhit.

» #GP—indicates whether the conditions in the first four columns cause a general-protection
exception (#GP) to occur.

+« FEffect on IF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.IF bit and theimage of EFLAGS.IF on the stack.

+ FEffect on VIF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.VIF bit and the image of EFLAGS.VIF on the stack.

274 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 8-12. Effect of Instructions that Modify the IF Bit

Operating Mode | Instruction | IOPL Y:I #GP Effect on | F Bit Effect on VIF Bit
CLI IF=0
Rea Mode ST! IF=1
CRO.PE=0 PUSHF EFLAGS.IF Stack Image = IF
EFLAGSVM=0 |POPF No | IF = EFLAGS.IF stack image
CR4.VME=0
EFLAGS.IF Stack Image = IF
CRAPVI=0 INTn - =
IF=0
IRET IF = EFLAGS.IF Stack Image
3CPL no |IF=0
CLI
<CPL yes |—
3CPL no |IF=1
STl CPL
Protected Mode = s | —
CRO.PE=1 PUSHF X EFLAGS.IF Stack Image = IF
EFLAGSVM=0 POPE 3CPL IF = EFLAGS.IF Stack Image
CRA.VME=x <CPL No Change
CRAPVIZ0 no [EFLAGS.IF Stack | IF
INTR gate GS.IF Stack Image =
IF=0
IRET X
IF = EFLAGS.IF Stack Image
IRETD
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“X" indicates the value of the bitisa “ don’t care” .
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. If the EFLAGSIF stack imageis 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGSIF stack imageis 1, the IRET is not executed, and a #GP exception occurs.

Exceptions and Interrupts [AM D PUb“C Use] 275

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode | Instruction | IOPL Y:I #GP Effect on | F Bit Effect on VIF Bit
3 no IF=0
CLI
<3 yes |—
3 no IF=1
STI
<3 yes |—
3 no EFLAGS.IF Stack Image = IF
PUSHF 3
Virtual-8086 Mode - e |—
CRO.PE=1 POPF 3 no IF = EFLAGS.IF Stack Image
EFLAGSVM=1 <3 yes |—
CRA.VME=0 EFLAGS.IF Stack Image = IF
CR4.PVI=x 3 no _
INTn gate IF=0
<3 yes |—
3 no IF = EFLAGS.IF Stack Image
IRET
<3 yes |—
3 no IF = EFLAGS.IF Stack Image
IRETD
<3 yes |—
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“X" indicates the value of the bitisa“ don’t care” .
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. If the EFLAGSIF stack imageis 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGSIF stack imageis 1, the IRET is not executed, and a #GP exception occurs.

276 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode | Instruction | IOPL Y:I #GP Effect on | F Bit Effect on VIF Bit
3 IF=0 No Change
CLI X no
<3 No Change VIF=0
3 X no IF=1 No Change
STI 3 0 no No Change VIF=1
<
yes | —
3 EFLAGS.IF Stack Image = IF Not Pushed
PUSHF X no
<3 Not Pushed EFLAGS.IF Stack Image=VIF
3 no EFLAGS.IF Stack Image = IF EFLAGS.VIF Stack Image = VIF
PUSHFD X
<3 yes |—
Virtual-8086 Mode 3 X no IF = EFLAGS.IF Stack Image | No Change
with VME POPF 5 0 |no |NoChange VIF = EFLAGS.IF Stack Image
H <
Extensions 1 yes |—
CRO.PE=1 —
EFLAGSVM=1 | popFD 3 « no IF = EFLAGS.IF Stack Image | No Change
CR4.VME=1 <3 yes |—
CR4.PVI=x -
3 :EFFI:/(-\)GS.IF Stack Image = IF No Change
INTn gate X ne EFLAGS.IF Stack | VIF
. ack Image =
<3 No Change VIE=0
3 X no IF = EFLAGS.IF Stack Image | No Change
no No Change VIF = EFLAGS.IF Stack Image
IRET
<3 not | No Change VIF = EFLAGS.IF Stack Image
1
yes? |—
3 no IF = EFLAGS.IF Stack Image | VIF = EFLAGS.IF Stack Image
IRETD X
<3 yes |—
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“X" indicates the value of the bitisa“ don’t care” .
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. If the EFLAGSIF stack imageis 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGSIF stack imageis 1, the IRET is not executed, and a #GP exception occurs.

Exceptions and Interrupts [AM D PUbllC Use] 277

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode | Instruction | IOPL Y:I #GP Effect on | F Bit Effect on VIF Bit
3 IF=0 No Change
CLI X no
<3 No Change VIF=0
3 X no IF=1 No Change
STI 0 no | No Change VIF=1
Protected Mode <3 po——
with PVI Extensions Y
_ PUSHF Not Pushed
CRO.PE=1 EFLAGS.IF Stack Image = IF
EFLAGSVM=0 |PUSHFD EFLAGS.VIF Stack Image = VIF
CRA.VME=X POPF No Change
CR4.PVI=1 IF = EFLAGS.IF Stack Image
— POPFD VIF=0
CPL=3 X X no
EFLAGS.IF Stack Image = IF
INT . No Ch
ngate IF = 0 (if interrupt gate) 0 Change
IRET No Change
IF = EFLAGS.IF Stack Image
IRETD VIF = EFLAGS.VIF Stack Image
Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“X" indicates the value of the bitisa“ don’t care”.
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. If the EFLAGSIF stack imageis 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGSIF stack imageis 1, the IRET is not executed, and a #GP exception occurs.

278 [AMD PUb“C Use] Exceptions and Interrupts

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

9 Machine Check Architecture

The AMDG64 Machine Check Architecture (MCA) plays avital rolein thereliability, availability, and
serviceability (RAS) of AMD processors, aswell asthe RAS of the computer systemsin which they
are embedded. M CA defines the facilities by which processor and system hardware errors are logged
and reported to system software. Thisallows system software to serve astrategic rolein recovery from
and diagnosis of hardware errors.

Error checking hardware is configured and information about detected error conditionsis conveyed
viaan architecturally-defined set of registers. The system programming interface of MCA is described
below in Section 9.3 “Machine Check Architecture MSRS’ on page 283.

9.1 Introduction

All computer systems are susceptible to errors—results that are contrary to the system design. Errors
can be categorized as soft or hard. Soft errors are caused by transient interference and are not
necessarily indicative of any damage to the computer circuitry. These external eventsinclude noise
from electromagnetic radiation and the incursion of sub-atomic particles that cause bit cell storage
capacitorsto change state.

Hard errors are repeatable malfunctions that are generally attributable to physical damage to computer
circuitry. Damage may be caused by external forces (for example, voltage surges) or wear processes
inherent in the circuit technology. Damaged circuit elements can manifest symptoms similar to those
that are caused by soft error processes. An increase in the frequency of errors attributable to one circuit
element may indicate that the element has sustained damage or is wearing-out and may, in the future,
cause a hard error.

9.1.1 Reliability, Availability, and Serviceability

This section describesthe concepts of reliability, availability, and serviceability (RAS) and shows how
they areinterrelated.

Therate at which errors occur in acomputer system isameasure of the system’ sreliability.
Availability isthe percentage of time that the system isavailable to do useful work. Errorsthat prevent
acomputer system from continued operation result in down-time, that is, periods of unavailability.
Down-time includes the amount of time required to restore the system to operation. This may include
the time to diagnose afailure, determine the field replaceable unit (FRU) containing the faulty
circuitry, carry out therepair action required to replace the identified FRU, and restart the system. This
time directly impacts the system’ savailability and is a measure of the system’ s serviceability.

The availability of acomputer system can be increased without decreasing performance or
significantly increasing cost through the judicious addition of data and control path redundancy in
concert with dedicated error-checking hardware. Together, redundancy and error checking detect and

Machine Check Architecture [AMD PUb“C Use] 279

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

often correct hardware errors. When errors are corrected by hardware, system operation continues
without any perceptible disruption or loss in performance.

Another important technique that can prevent down-timeiserror containment. Error containment
limitsthe propagation of an erroneous data. Thisenhances system availability by limiting the effects of
errorsto asubset of software or hardware resources. System software may either correct the error and
resume the interrupted program or, if the error cannot be corrected, terminate software processes that
cannot continue due to the error.

Error logging enhances serviceability by providing information that is used to identify the FRU that
containsthefailed circuitry. The mechanical design of the computer system can enhance serviceability
(and thus availability) by making the task of physically replacing afailed FRU quicker and easier.

9.1.2 Error Detection, Logging, and Reporting

Error detection requires specific error-checking hardware that compares the actual result of some data
transfer or transformation to the expected result. Any disparity indicates that an error has occurred.
Error detection is controlled through implementation-specific means. Disabling detection is normally
only appropriate when hardware is being debugged in the |aboratory.

When an error is detected, hardware autonomously actsto either correct the error or contain the
propagation of the corrupting effects of an uncorrected error. For some error sources, hardware action
can be disabled by software through the MCA interface.

Ashardware acts to correct or contain a detected error, it gathersinformation about the error to aid in
recovery, diagnosis, and repair. The architecture provides software control of error logging and
reporting. The following describes the characteristics of each:

* Logging
Logging involves saving information about the error in specific MCA registers. If the error

reporting bank associated with the error source is enabled, logging occurs; if disabled, error
information is generally discarded (there are implementati on-specific exceptions).

* Reporting
An uncorrected error may be reported to system software viaa machine-check exception, if error
reporting for the specific error source is enabled.

Reporting is the hardware-initiated action of interrupting the processor using a machine-check
exception (#M C). Reporting for each specific error type can be enabled or disabled by system software
though the MCA register interface. Even if reporting for an error typeis disabled, logging may
continue.

Disabling reporting can negatively impact both error containment and error recovery (see the next
section) and should be avoided.

Hardware categorizes errorsinto three classes. These are:
e corrected

280 [AMD PUbllC Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

e uncorrected
* deferred

The following sections describe the characteristics of each of these error classes:

If an error can be corrected by hardware, no immediate action by software isrequired. In this case,
information islogged, if enabled, to aid in later diagnosis and possible repair.

If correction isnot possible, the error is classified as uncorrected. The occurrence of an uncorrected
error requires immediate action by system software to either correct the error and resume the
interrupted program or, if software-based correction is not possible, to determine the extent of the
impact of the uncorrected error to any executing instruction stream or the architectural state of the
processor or system and take actions to contain the error condition by terminating corrupted software
processes.

For errorsthat are not corrected, but have no immediate impact on the architectural state of the system,
processor core, or any current thread of execution, the error may be classified by hardware asa
deferred error. Information about deferred errorsislogged, if enabled, but not reported viaamachine-
check exception. Instead hardware monitors the error and escal ates the error classification to
uncorrected at the point in time where the error condition is about to impact the execution of an
instruction stream or cause the corruption of the processor core or system architectural state.

This escalation resultsin a#M C exception, assuming that reporting for that error source is enabled. If
software can correct the error, it may be possible to resume the affected program. If not, software can
terminate the affected program rather than bringing down the entire system. Thisisreferred to aserror
localization.

A common example of deferred error processing and localization isthe conversion of globally
uncorrected DRAM errorsto process-specific consumed memory errors. In this example, uncorrected
ECC-protected datathat has not yet been consumed by any processor coreistagged as* poison.”
Hardware reports the uncorrected data as alocalized error viaa#M C exception when it is about to be
used (“consumed”) by an instruction execution stream.

In contrast, an error that cannot be contained and is of such severity that it has compromised the
continued operation of aprocessor core requires immediate action to terminate system processing and
may result in a hardware-enforced shutdown. In the shutdown state, the execution of instructions by
that processor coreis halted. See Section 8.2.9 “#DF—Double-Fault Exception (Vector 8)” on

page 234 for a description of the shutdown processor state.

If supported, system software can chose to configure and enable hardware to generate an interrupt
when adeferred error isfirst detected. Corrected errors may be counted asthey arelogged. If
supported and enabled, exceeding a software-configured count threshold may be signalled viaan
interrupt. These notification mechanisms are independent of machine-check reporting.

Specific detailson hardware error detection, logging, and reporting are implementati on-dependent and
are described in the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

Machine Check Architecture [AMD PUb“C Use] 281

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

9.1.3 Error Recovery

When errors cannot be corrected by hardware, error recovery comesinto play. Error recovery, as
defined by MCA, always involves software intervention. Logged information about the uncorrected
error condition that caused the exception allows system software to take actions to either correct the
error and resume the interrupted execution stream or terminate software processes (or higher-level
software constructs) that are known to be affected by the uncorrected error.

From a system perspective, all errors are either recoverable or unrecoverable. The following outlines
the characteristics of each:

* Recoverable—Hardware has determined that the architectural state of the processor experiencing
the uncorrected error has not been compromised. Software execution can continue if system
software can determine the extent of the error and take actionsto either:

- correct the error and resume the interrupted stream of execution or,

- if thisisnot possible, terminate software processes that have incurred aloss of architectural
state and continue other software processes that are unaffected by the error.

» Unrecoverable—Hardware has determined that the architectural state of the processor
experiencing the uncorrected error has been corrupted. Software execution cannot reliably
continue.

Software saves any diagnostic information that it may be able to gather and halts.

The fact that an error is recoverable does not mean that recovery software will be able to resume
program execution. If it is unable to determine the extent of the corruption or if it determines that
essential state information has been lost, it may only be able to save information about the error and
halt processing.

System software has many optionsto recover from an uncorrected error. The following isapartial list
of possible actions that system software might take:

» If it can be determined that the corruption caused by the uncorrected error is contained within a
software process, software can kill the process.

» If theuncorrected error has corrupted the architectural state of avirtual machine, the VMM can
rebuild the container (using only hardware resources that are known to be good) and reboot the
guest operating system.

» If theuncorrected error isapart of ablock of data being transferred to or from an 1/0 device, the
datatransfer can be flushed and retried or terminated with an error.

» If theuncorrected error is dueto ahard link failure, software can reconfigure the network to route
information around the failed link.

» If theuncorrected error isin a cache and the cache line containing the uncorrected (known bad)
dataisin the shared state, software can invalidate the line so that it will be reloaded from memory
or another cache that hasthe line in the owned state.

282 [AMD PUb“C Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Many more error scenarios are recoverable depending on the effectiveness of hardware error
containment, the logging capabilities of the system, and the sophistication of the recovery software
that acts on the information conveyed through the MCA reporting structure.

If recovery software isunableto restore avalid system architectural state at some level of software
abstraction (process, guest operating system, virtual machine, or virtual machine monitor), the
uncorrected error is considered systemfatal. In this situation, system software must halt the execution
of instructions. A system reset isrequired to restore the system to a known-good architectural state.

9.2 Determining Machine-Check Architecture Support

Support for the machine-check architecture isimplementation-dependent. System software executes
the CPUID instruction to determine whether a processor implements the machine-check exception
(#MC) and the global MCA M SRs. The CPUID Fn0000_0001_EDX[MCE] feature bit indicates
support for the machine-check exception and the CPUID FnO0O00_0001 EDX[MCA] feature bit
indicates support for the base set of global machine-check MSRs.

Once system software determines that the base set of MCA MSRsisavailable, it determinesthe
implemented number of machine-check reporting banks by reading the machine-check capabilities
register (MCG_CAP), which isthefirst of the global MCA MSRs.

For a processor implementation to provide an architecturally compliant MCA interface, it must
provide support for the machine-check exception, the global machine-check M SRs, the watchdog
timer (see* CPU Watchdog Timer Register” on page 286.), and at |east one bank of the machine-check
reporting registers.

Support for the deferred reporting and software-based containment of uncorrected dataerrorsis
indicated by the feature bit CPUID Fn8000_0007_EBX[SUCCOR]. See “Machine-Check Recovery”
on page 289.

Support for recoverable MCA overflow conditionsisindicated by feature bit CPUID
Fn8000_0007_EBX[McaOverflowRecov]. See the discussion of recoverable status overflow in
Section “MCA Overflow” on page 288.

Implementati on-specific information concerning the machine-check mechanism can be found in the
BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product. For more information on using the CPUID instruction, see Section 3.3,
“Processor Feature Identification,” on page 66.

9.3 Machine Check Architecture MSRs
The AM D64 Machine-Check Architecture defines the set of model-specific registers (MCA MSRs)
used to log and report hardware errors. Theseregisters are:

» Global status and control registers:
- Machine-check global-capabilitiesregister (MCG_CAP)

Machine Check Architecture [AMD PUb“C Use] 283

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

- Machine-check global-status register (MCG_STATUYS)
- Machine-check global-control register (MCG_CTL)
» Oneor more error-reporting register banks, each containing:
- Machine-check control register (MCi_CTL)
- Machine-check status register (MCi_STATUYS)
- Machine-check addressregister (MCi_ADDR)
- Atleast one machine-check miscellaneous error-information register (MCi_MISCO0)

Each error-reporting register bank is associated with a specific processor unit (or group of
Processor units).

» CPU Watchdog Timer register (CPU_WATCHDOG_TIMER)

The error-reporting registers retain their values through awarm reset. (A warm reset occurswhile
power to the processor is stable. Thisin contrast to acold reset, which occurs during the application of
power after a period of power loss.) This preservation of error information allows the platform
firmware or other system-boot software to recover and report information associated with the error
when the processor isforced into a shutdown state.

The RDM SR and WRM SR instructions are used to read and write the machine-check MSRs. See
“Machine-Check MSRS’ on page 641 for alisting of the machine-check M SR numbers and their reset
values. The following sections describe each MCA M SR and its function.

9.3.1 Global Status and Control Registers
The global status and control MSRsarethe MCG_CAP, MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9-1 shows the format of the machine-check
global-capabilitiesregister (MCG_CAP). MCG_CAPisaread-only register that specifiesthe
machine-check mechanism capabilities supported by the processor implementation.

63 32
Reserved
31 9 8 7 0
C
Reserved I BANK_CNT
P
Bits Mnemonic Description R/W
63:9 Reserved
8 CTLP MCG_CTL register present R
7:0 BANK_CNT Number of reporting banks R

Figure 9-1. MCG_CAP Register

284 [AMD PUb“C Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

Thefieldswithinthe MCG_CAPregister are:

* BANK_CNT (MCi Bank Count)—Bits 7:0. Thisfield specifies how many error-reporting register
banks are supported by the processor implementation.

* CTLP(MCG_CTL Register Present)—Bit 8. This bit specifies whether or not the Machine-Check
Global-Control (MCG_CTL) Register is supported by the processor. When the bit is set to 1, the
register is supported. When the bit is cleared to 0, the register is unsupported. The MCG_CTL
register is described on page 286.

All remaining bitsinthe MCG_CAPregister are reserved. Writing valuesto the MCG_CAP register
produces undefined results.

Machine-Check Global-Status Register. Figure 9-2 showsthe format of the machine-check
global-status register (MCG_STATUS). MCG_STATUS provides basic information about the
processor state after the occurrence of a machine-check error.

63 32
Reserved
31 3 2 10
M|E|R
Cl1 |1
Reserved Llple
P|V|V
Bits Mnemonic Description R/W
63:3 Reserved
2 MCIP Machine Check In-Progress R/W
1 EIPV Error IPValid Flag R/W
0 RIPV Restart IPValid Flag R/W

Figure 9-2. MCG_STATUS Register

Thefieldswithinthe MCG_STATUS register are:

* Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the interrupted program can be reliably
restarted at the instruction addressed by the instruction pointer pushed onto the stack by the
machine-check error mechanism. If thishit is cleared to 0, the interrupted program cannot be
reliably restarted.

e Error-IP Valid (EIPV)—BiIt 1. When thisbit is set to 1, the instruction that is referenced by the
instruction pointer pushed onto the stack by the machine-check error mechanism isresponsiblefor
the machine-check error. If thishitiscleared to O, it is possible that the instruction referenced by
the instruction pointer is not responsible for the machine-check error.

* Machine Check In-Progress (MCIP)—Bit 2. When thisbit is set to 1, it indicates that a machine-
check error isin progress. If another machine-check error occurs whilethis bit is set, the processor

Machine Check Architecture [AMD PUbllC Use] 285

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

enters the shutdown state. The processor sets this bit whenever a machine check exceptionis
generated. Softwareisresponsible for clearing it after the machine check exception is handled.

All remaining bitsinthe MCG_STATUS register are reserved.

Machine-Check Global-Control Register. Figure 9-3 showsthe format of the machine-check
global-control register (MCG_CTL). MCG_CTL isused by software to enable or disable the logging
and reporting of machine-check errorsfrom theimplemented error-reporting banks. Depending on the
implementation, detected errors from some error sources associated with areporting bank that is
disabled are still logged. Setting all bitsto 1 in thisregister enables all implemented error-reporting
register banksto log errors.

63

Error-Reporting Register-Bank Enable Bits

woZm
NZm (N
R Zm |-
ozZm |o

Figure 9-3. MCG_CTL Register

CPU Watchdog Timer Register. The CPU watchdog timer is used to generate a machine check
condition when an instruction does not complete within atime period specified by the CPU Watchdog
Timer register. The timer restarts the count each time an instruction compl etes, when enabled by the
CPU Watchdog Timer Enable bit. The time period is determined by the Count Select and Time Base
fields. The timer does not count during halt or stop-grant.

The format of the CPU watchdog timer is shown in Figure 9-4.

63 32
Reserved, MBZ

31 7 6 3 2 10
Model dependent; see BKDG or PPR for desired processor. (O B :\El

Bits Mnemonic Description R/W

63:7 Reserved Reserved, Must be Zero

6:3 CS CPU Watchdog Timer Count Select R/W

21 TB CPU Watchdog Timer Time Base R/W

0 EN CPU Watchdog Timer Enable R/W

Figure 9-4. CPU Watchdog Timer Register Format

Machine Check Architecture

260 [AMD Public Use]

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

CPU Watchdog Timer Enable (EN) - Bit 0. This bit specifies whether the CPU Watchdog Timer is
enabled. When the bit is set to 1, the timer increments and generates a machine check when the timer
expires. When cleared to 0, the timer does not increment and no machine check is generated.

CPU Watchdog Timer Time Base (TB) - Bits 2:1. Specifies the time base for the time-out period
indicated in the Count Select field. The allowabl e time base values are provided in Table 9-1.

Table 9-1. CPU Watchdog Timer Time Base

TB[1:0] Time Base
00b 1 millisecond
01b 1 microsecond
10b Reserved
11b Reserved

CPU Watchdog Timer Count Select (CS) - Bits 6:3. Specifiesthe time period required for the CPU
Watchdog Timer to expire. The time period isthisvalue times the time base specified in the Time Base
field. The allowable values are shown in Table 9-2.

Table 9-2. CPU Watchdog Timer Count Select

CY[3:0] Value
0000b 4095
0001b 2047
0010b 1023
0011b 511
0100b 255
0101b 127
0110b 63
0111b 31
1000b 8191
1001b 16383
o o

9.3.2 Error-Reporting Register Banks

Each error-reporting register bank contains the following registers:

* Machine-check control register (MCi_CTL).

e Machine-check statusregister (MCi_STATUS).

* Machine-check addressregister (MCi_ADDR).

* Machine-check miscellaneous error-information register 0 (MCi_MISCO0).

Machine Check Architecture [AMD PUb“C Use] 287

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

Thei in each register name corresponds to the number of a supported register bank. Each error-
reporting register bank is normally associated with a specific execution unit. The number of error-
reporting register banks isimplementation-specific. For more information, see the BIOSand Kernel
Developer’ s Guide (BKDG) or Processor Programming Reference Manual applicableto your product.

Software reads the MCG_CAPregister to determine the number of supported register banks. The first
error-reporting register (MCO_CTL) always starts with M SR address 400h, followed by
MCO_STATUS (401h), MCO_ADDR (402h), and MCO_MISCO0 (403h). The addresses of any
additional error-reporting M SRs are assigned sequentially starting at 404h through the remaining
supported register banks.

MCA Overflow. If an error occurswithin an error reporting bank while the status register for that
bank containsvalid data(MCi_STATUS[VAL] = 1), an MCA overflow condition results. In this
situation, information about the new error will either be discarded or will replace the information about
the prior error.

Hardware setsthe MCi_STATUS[OVER] hit to indicate this condition has occurred and follows a set
of rules to determine whether to overwrite the previously logged error information or discard the new
error information. These rules are shown in Table 9-3 below.

Table 9-3. Error Logging Priorities

PreviousError Type
Corrected Deferred Uncorrected
Current Corrected Discard Current Discard Current Discard Current
Error Deferred Overwrite Previous Discard Current Discard Current
Type Uncorrected Overwrite Previous | Overwrite Previous Discard Current
Note(s):

1. Logging a deferred error has priority over the retention of information concerning a prior corrected error.

2. Logging an uncorrected error has priority over the retention of information concerning either a prior deferred
or corrected error.

3. Valid Information concerning an uncorrected error is not overwritten by any subsequent errors.

If the VAL bit isnot set, hardware writes the appropriate |ogging registers based on the type of error
(writing the MCi_STATUS register last) and then setsthe VAL bit to indicate to software that the
information currently contained in the MCi_STATUS register isvalid. Software clearsthe VAL bit
after reading the contents of thisregister (after reading and saving valid information stored in any of
the other logging registers) to indicate to hardware that it has saved the information, making the
registers available to log the next error.

If survivable MCA overflow is supported by the implementation (as indicated by CPUID
Fn8000_0007_EBX[McaOverflowRecov] = 1), the state of the MCi_STATUS[PCC] bit indicates
whether system execution can continue. If aparticular processor does not support survivable MCA
overflow and overflow occurs, software must halt instruction execution on that processor core
regardless of the state of the PCC hit because critical information may have been lost as aresult of the

288 [AMD PUbllC Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

overflow. See the description of the Machine-Check Status registers below for more information on
the PCC hit.

Machine-Check Recovery. Machine Check Recovery isafeature allowing recovery of the system
when the hardware cannot correct an error. Machine Check Recovery is supported when
Fn8000_0007_EBX[SUCCOR]=1.

When Machine Check Recovery is supported and an uncorrected error has been detected that the
hardware can contain to the task or process to which the machine check has been delivered, it logsa
context-synchronous uncorrectable error (MCi_ STATUS[UC]=1, MCi_STATUS PCC]=0). Therest
of the system is unaffected and may continue running if supervisory software can terminate only the
affected process context.

Machine-Check Control Registers. The machine-check control registers(MCi_CTL), asshownin
Figure 9-5, contain an enable bit for each error source within an error-reporting register bank. Setting
an enable bit to 1 enables error reporting for the specific feature controlled by the bit, and clearing the
bit to O disables error reporting for the feature. It is recommended that the value
FFFF_FFFF_FFFF_FFFFh be programmed into each MCi_CTL register.

Disabling the reporting of errors from error sources that are capabl e of detecting uncorrected errors
can compromise future error recovery and is not recommended. Other implementation-specific values
are documented in the product’ s BIOSand Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual.

o))
w

Error-Reporting Register-Bank Enable Bits

woZm
NZm N
R ZMm [
oZm |o

Figure 9-5. MCi_CTL Register

Machine-Check Status Registers. Each error-reporting register bank includes a machine-check
statusregister (MCi_STATUS) that the processor usesto log error information. Hardware writes the
status register bitswhen an error is detected, and setsthe VAL bit of theregister to 1, indicating that the
statusinformation isvalid. Error reporting for the error source associated with the detected error does
not need to be enabled in the MCi_CTL Register for the processor to write the status register. Error
reporting must be enabled for the error to be reported viaa#M C exception. Softwareisresponsible for
clearing the status register after the exception has been handled. Attempting to write avalue other than
Otoan MCi_STATUS register will raise a general-protection (#GP) exception.

Figure 9-6 on page 290 shows the format of the MCi_STATUS register.

Machine Check Architecture [AMD PUb“C Use] 289

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 61 60 59 58 57 56 55 54 45 44 43 42 32
M| A
\Y, \O/ ule I |D|P T Ble
A S|D|C C| Implementation-specific information | & 8 Implementation-specific information
L E CINlclr|c| |c T &
V|V
31 16 15 0
Model - Specific Extended Error Code MCA Error Code
Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 uc Uncorrected Error R/W*
60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*
57 PCC Processor-Context Corrupt R/W*
56 Implementation-specific information R/W*
55 TCC Task-Context Corrupt R/W*
54:45 I mplementation-specific information R/W*
44 Deferred Deferred error R/W*
43 Poison Poisoned data consumed R/W*
42:32 Implementati on-specific information R/W*
31:16 Model-Specific Extended Error Code R/W*
15:0 MCA Error Code R/W*

* System software can only clear this bit to 0.

Figure 9-6. MCi_STATUS Register

Thefieldswithinthe MCi_STATUS register are:

e MCAError Code—Bits 15:0. Thisfield encodes information about the error, including:
- Thetype of transaction that caused the error.
- The memory-hierarchy level involved in the error.
- Thetype of request that caused the error.
- Other information concerning the transaction type.

See the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference
Manual applicable to your product for information on the format and encoding of the MCA error
code.

* Model-Specific Extended Error Code—Bits 31:16. Thisfield encodes model-specific information
about the error. For further information, see the documentation for particular implementations of
the architecture.

290 [AMD PUbllC Use] Machine Check Architecture

AMDA

24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

I mplementati on-specific Information—Bits 56, 54:45, 42:32. These bit ranges hold model -specific
error information. Software should not rely on thefield definitionsin these ranges being consistent
between processor implementations. For details see the BKDG or PPR for desired
implementations of the architecture.

Poison—Bit 43. When set to 1, this bit indicates that the uncorrected error condition being
reported is due to the attempted use of datathat was previous detected asin error (and could not be
corrected) and marked as known-bad.

Deferred—Bit 44. When set to 1, this bit indicates that hardware has determined that the error
condition being logged has not affected the execution of any instruction stream and that action by
system software to prevent or correct an error is not required. No machine-check exception is
signalled. Hardware will monitor the error and log an uncorrected error when the execution of any
thread of execution isimpacted.

TCC—BIt 55. When set to 1, this bit indicates that the hardware context of the process thread to
which the error was reported may have been corrupted. Continued operation of the thread may
have unpredictable results. When this bit is cleared, the hardware context of the process thread to
which the error was reported is not corrupted and recovery of the processthread is possible. This
bit is only meaningful when MCA_STATUSPCC]=0.

PCC—BIt 57. When set to 1, this bit indicates that the processor stateislikely to be corrupt due to
an uncorrected error. In this case, it is possible that software cannot reliably continue execution.
When thisbit is cleared, the processor state is not corrupted and recovery is still possible. If the
PCC bit isset in any error bank, the processor will clear RIPV and EIPV inthe MCG_STATUS
register.

ADDRV—aBIt 58. When set to 1, thisbit indicates that the contents of the corresponding error-
reporting addressregister (MCi_ ADDR) arevalid. When this bit is cleared, the contents of
MCi_ADDR are not valid.

MISCV—BIt 59. When set to 1, this bit indicates that additional information about the error is
saved in the corresponding error-reporting miscellaneous register (MCi_MI1SCO0). When cleared,
thisbit indicates that the contents of the MCi_MISCO register are not valid.
EN—BIt 60. When set to 1, thisbit indicates that the error condition is enabled in the
corresponding error-reporting control register (MCi_CTL). Errorsdisabled by MCi_CTL do not
cause amachine-check exception.
UC—BIt 61. When set to 1, thisbit indicates that thelogged error statusisfor an uncorrected error.
When cleared, the error classis determined by looking at the Deferred bit; the error is a Corrected
error if the Deferred bit is clear or aDeferred error if the Deferred bit isset. (See Section 9.1.2,
“Error Detection, Logging, and Reporting,” on page 280, for more detail on these error classes.)
OVER—RBIt 62. Thisbit isset to 1 by the processor if the VAL bit isaready set to 1 asthe
processor attemptsto write error information into MCi_ STATUS. In this situation, the machine-
check mechanism handles the contents of MCi_ STATUS asfollows:
- For processor implementations that 1og errorsfor disabled reporting banks, statusfor an
enabled error replaces status for adisabled error.

- Statusfor adeferred error replaces status for a corrected error.

Machine Check Architecture [AMD PUb“C Use] 291

AMDA1
AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

- Statusfor an uncorrected error replaces status for a corrected or deferred error.
- Statusfor an enabled uncorrected error is never replaced.
See Section “MCA Overflow” on page 288 for more information on thisfield.

* VAL—BIt 63. Thishitisset to 1 by the processor if the contents of MCi_ STATUS are valid.
Software should clear the VAL bit after reading the MCi_STATUS register, otherwise a subsequent
machine-check error setsthe OVER bit as described above.

When a machine-check error occurs, the processor writes an error code into the appropriate
MCi_STATUS register MCA error-code field. The MCi_ STATUS[VAL] bitisset to 1, indicating that
the MCi_STATUS register contents are valid.

MCA error-codes are used to report errorsin the memory hierarchy, the system bus, and the system-
interconnection logic. Error-codes are divided into subfields that are used to describe the cause of an
error. The information isimplementation-specific. For further information, see the BIOSand Kernel
Developer’ s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

Machine-Check Address Registers. Each error-reporting register bank includes a machine-check
addressregister (MCi_ADDR) that the processor usesto report the address or |ocation associated with
thelogged error. The address field can hold avirtual (linear) address, aphysical address, or avalue
indicating an internal physical location, depending on thetype of error. For further information, seethe
documentation for particular implementations of the architecture. The contents of thisregister are
valid only if the ADDRV bit in the corresponding MCi_STATUS register isset to 1.

Machine-Check Miscellaneous-Error Information Register O(MCi_MISCO0). Each error-reporting
register bank includes the Machine-Check Miscellaneous O register that the processor usesto report
additional error information.

In someimplementations, the MCi_MISCO register is used for error thresholding. Thresholdingisa
mechanism provided by hardware to:
* count detected errors, and

» (optionally) generate an APIC-based interrupt when a programmed number of errors has been
counted.

Processor hardware counts detected errors and ensures that multiple error sources do not share the
same thresholding register. Software can use corrected error counts to help predict which components
might soon fail (begin generating uncorrectable errors) and schedul e their replacement.

Threshold counters increment for error sources that are enabled for logging.

TheMCi_MISCO[BIkPtr] field isused to point to any additional MCi_MISCj registers, wherej > 0. If
thisfield iszero, no additional MCi_MISC registers are implemented. If thisfield isone, and
Fn8000_0007_EBX][ScalableMcal=1, additional MCi_MISC registers are implemented.

Additional Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj). If the
MCi_MISCO[BIkPtr] field is non-zero and Fn8000_0007_EBX[ScalableMca]=0, up to 8 additional

292 [AMD PUb“C Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

MCi_MISCj registers can be implemented for the error-reporting bank i (for atotal of 9). These
registers are allocated in contiguous blocks of 8, with MCi_MISC1 addressed by:

MCi_MISCL1 address = CO00_0400h + (MCi_MISCO[BIkPtr] << 3)
Thisisillustrated in Figure 9-7 below.

MCi_CTL
MCi_STATUS
MCi_ADDR

MCi_MISCO —‘
|

C000_0400h + (MCi_MISCO[BIkPtr] << 3)

MCi_MISC1
MCi_MISC2
MCi_MISC3

MCi_MISC8

Figure 9-7. MCi_MISC1 Addressing

The format of implemented MCi_MISCj registers depends upon their use and use can vary from one
implementation to another. Figure 9-8 below illustrates the format of a miscellaneous error
information register when used as an error threshol ding register.

All miscellaneous error information registers will contain the VAL field in bit position 63.
MCi_MISCO must contain the BLKPfield in bits 31:24.

Machine Check Architecture [AM D PU b||C Use] 293

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020
63 62 61 60 59 56 55 52 51 50 49 48 47 32
vITIL SERE
A K % Reserved LVTOFF ERRCT
L R NE T T F
P E| T
31 24 23 0
BLKP Reserved
Bits Mnemonic Description R/W Reset
63 VAL Valid R 1b
62 CTRP Counter Present R 1b
61 LKD Locked R/W 0b
60 IntP Thresholding Interrupt Supported R Xb
59:56 Reserved
55:52 LVTOFF LVT Offset R/W 0000b
51 CNTE Counter Enable R/W 0Ob
50:49 INTT Interrupt Type R/W 00b
48 OF Overflow R/W Xb
47:32 ERRCT Error Counter R/W XXXXh
31:24 BLKP Block pointer for additional MISC registers R
23.0 Reserved

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format)

Thefieldswithinthe MCi_MISCj register are:

Valid (VAL)—BIt 63. When set to 1, indicates that the counter present (CTRP) and block pointer
(BLKP) fieldsin thisregister are valid.

Counter Present (CTRP)—BIt 62. When set to 1, indicates the presence of athreshold counter.

Locked (LKD)—Bit 61. When set to 1, indicates that the threshold counter is not available for OS
use. If thisisthe case, writesto bits 60:0 of thisregister areignored and do not generate afault.
Software must check the Locked bit before writing into the threshol ding register.

Thisfield iswrite-enabled by MSR C001_0015h Hardware Configuration Register
[MCSTATUSWrER].

IntP (Thresholding Interrupt Supported)—Bit 60. When set, this bit indicates that the reporting of
threshold overflow viainterrupt is supported. Interrupt type is determined by the setting of the
INTT field.

LVT Offset (LVTOFF)—Bits 55:52. Thisfield specifies the address of the APIC LVT entry to
deliver the threshold counter interrupt. Software must initializethe APIC LV T entry before
enabling the threshold counter to generate the APIC interrupt; otherwise, undefined behavior may
result.

APIC LVT address = (MCi_MISCj[LVtOff] << 4) + 500h

294 [AMD PUb“C Use] Machine Check Architecture

AMDA
24593—Rev. 3.36—O0ctober 2020 AMDG64 Technology

» Counter Enable (CNTE)—BiIt 51. When set to 1, counting of implementation-dependent errorsis
enabled; otherwise, counting is disabled.

* Interrupt Type (INTT)—Bits 50:49. The value of thisfield specifiesthe type of interrupt signaled
when the value of the overflow bit changesfrom 0 to 1.

- 00b = Nointerrupt

- 01b=APIC-based interrupt
- 10b=Reserved

- 11b=Reserved

* Overflow (OF)—Bit 48. The value of thisfield is maintained through awarm reset. Thisbit is set
by hardware when the error counter increments to its maximum implementation-supported value
(from FFFEh to FFFFh for the maximum implementation-supported value). Thisis defined asthe
threshold level. When the overflow bit is set, the interrupt selected by the interrupt typefieldis
generated. Software must reset thisbit to zero in the interrupt handler routine when they update the
error counter.

» Error Counter (ERRCT)—Bits47:32. Thisfield ismaintained through awarm reset. The size of
the threshold counter isimplementation-dependent. Implementations with less than 16 bitsfill the
most significant unimplemented bits with zeros.

Software enumerates the counter bitsto discover the size of the counter and the threshold level
(when counter increments to the maximum count implemented). Software sets the starting error
count asfollows:

Sarting error count = threshold level — desired software error count to cause overflow

The error counter isincremented by hardware when errors for the associated error counter are
logged. When this counter overflows, it stays at the maximum error count (with no rollover).

» Block pointer for additional MISC registers (BLKP)—Bits 31:24. Thisfield isonly valid when
valid (VAL) bit is set. When non-zero, thisfield is used to indicate the presence of additional
MCi_MISC registers.

Other formats for miscellaneous information registers are implementation-dependent, see the BIOS
and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual applicableto
your product for more details.

9.4 Initializing the Machine-Check Mechanism

Following a processor reset, all machine-check error-reporting enable bits are disabled. System
software must enabl e these bits before machine-check errors can be reported. Generally, system
software should initialize the machine-check mechanism using the following process:

» Executethe CPUID instruction and verify that the processor supports the machine-check
exception (MCE) and machine-check registers (MCA). Software should not proceed with
initializing the machine-check mechanism if the machine-check registers are not supported.

» If the machine-check registers are supported, system software should take the following steps:

Machine Check Architecture [AMD PUb“C Use] 295

AMDAQ

AMDG64 Technology 24593—Rev. 3.36—O0ctober 2020

- Check toseeif the CTLPbitinthe MCG_CAPregisterissetto 1. If itis, thenthe MCG_CTL
register is supported by the processor. If the MCG_CTL register is supported, software should
set its enable bitsto 1 for the machine-check featuresit uses. Software can load MCG_CTL
with al 1sto enable al available machine-check reporting banks.

- Read the COUNT field from the MCG_CAP register to determine the number of error-
reporting register banks supported by the processor. For each error-reporting register bank,
software should set the enable bitsto 1 inthe MCi_CTL register for the error typesit wantsthe
processor to report. Software can writeeach MCi_CTL with all 1sto enable all error-reporting
mechanisms.

Not enabling reporting banks that may be involved in the reporting of uncorrected errors can
lead to the loss of system reliability and error recoverability.

- Check the VAL bit on each implemented MCi_STATUS register. It is possible that valid error-
status information has already been logged in the MCi_ STATUS registers at the time software
Is attempting to initialize them. The status can reflect errors logged prior to awarm reset or
errors recorded during the system power-up and boot process. Before clearing the
MCi_STATUS registers, software should examine their contents and log any errors found.

- After saving any valid error information contained inthe MCi_STATUS, MCi_ADDR, and
any implemented miscellaneous error information registersfor each implemented reporting
bank, software should clear al statusfieldsinthe MCi_STATUS register for each bank by
writing all Osto the register.

Asafina step intheinitialization process, system software should enable the machine-check
exception by setting CR4[MCE] to 1.

A machine-check condition that occurs while CR4[MCE] is cleared will result in the processor core
entering the shutdown state.

9.5 Using MCA Features

System software can detect and handle logged errors using