794 lines
28 KiB
Plaintext
794 lines
28 KiB
Plaintext
/** READ BEFORE JUDING!
|
|
* Yes, I know this code is a mess. Debug code is added
|
|
* happhazardly, two cameras are used, etc.
|
|
* That's because it's a temporary program
|
|
* to create optimizations and debug rendering issues without hardware.
|
|
* None of this is going to be included in the project, and the code is thus
|
|
* not extensible or organized; it really doesn't save any effort to do so.
|
|
*
|
|
* This code is meant for my eyes only. You've been warned!
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <raylib.h>
|
|
#include <raymath.h>
|
|
#include <limits.h>
|
|
#include <complex.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <time.h>
|
|
|
|
#define WINDOW_SIZE_X 1600
|
|
#define WINDOW_SIZE_Y 800
|
|
#define RES_X 160
|
|
#define RES_Y 80
|
|
#define DEFAULT_CENTER_X 0
|
|
#define DEFAULT_CENTER_Y 0
|
|
#define MOUSE_BUTTON 0
|
|
#define STEP_SIZE .1
|
|
#define ZOOM_SIZE .1
|
|
|
|
|
|
#define DECIMAL_LOC 28
|
|
#define DOUBLE_SCALER (1 << DECIMAL_LOC)
|
|
#define DOUBLE_TO_FIXED(val) (int32_t)((val) * DOUBLE_SCALER)
|
|
#define FIXED_MULTIPLY(x,y) ((((uint64_t)(x))*(y)) >> DECIMAL_LOC)
|
|
#define FIXED_TO_DOUBLE(val) ((val) / (double)DOUBLE_SCALER)
|
|
|
|
#define INFTY 2
|
|
#define INFTY_SQR INFTY * INFTY
|
|
#define ITERS 255
|
|
#define INFTY_SQR_FIXED DOUBLE_TO_FIXED(INFTY_SQR)
|
|
|
|
//#define SHIP
|
|
//#undef SHIP
|
|
//#define COLOR_DEBUG
|
|
|
|
Color get_color_dbg(int i) {
|
|
if(i == ITERS) return (Color){0,0,255,255};
|
|
// if(i == 0) return (Color){255,255,255,255};
|
|
return (Color){255,0,255,255};
|
|
}
|
|
|
|
|
|
#ifdef COLOR_DEBUG
|
|
#elif SHIP
|
|
Color get_color(int i) {
|
|
if(i == ITERS) return (Color){0, 0, 0, 255};
|
|
if(i == 0) return (Color){0, 0, 0, 255};
|
|
return (Color) {
|
|
2*(i - 128)+255,
|
|
0,
|
|
0,
|
|
255
|
|
};
|
|
}
|
|
#else
|
|
Color get_color(int i) {
|
|
// if((i == ITERS) || (i == 0)) return (Color){0, 0, 0, 255};
|
|
if(i == ITERS) return (Color){0,0,0,255};
|
|
if(i == 0) return (Color){0,0,1,255};
|
|
if(i < 128) {
|
|
return (Color) {
|
|
(8*(i - 128)+255) & 0xff,
|
|
0,
|
|
(16*(i - 64)+255) & 0xff,
|
|
255
|
|
};
|
|
}
|
|
return (Color) {
|
|
0,
|
|
0,
|
|
((unsigned int)-2*(i - 128)+255) & 0xff,
|
|
255
|
|
};
|
|
}
|
|
#endif
|
|
|
|
//C does remainder, not modulo.
|
|
//TODO optimize for mod 8
|
|
inline int mod(int n, int d) {
|
|
int r = n % d;
|
|
return (r < 0) ? r + d : r;
|
|
}
|
|
int mod(int n, int d);
|
|
|
|
|
|
struct camera {
|
|
double min_r, min_i, max_r, max_i;
|
|
};
|
|
|
|
typedef struct {
|
|
int32_t r; int32_t i;
|
|
} FixedCord;
|
|
|
|
static inline int iterate(FixedCord c) {
|
|
int32_t z_i = 0;
|
|
int32_t z_r = 0;
|
|
int32_t z_r_2, z_i_2, zn_r, zn_i;
|
|
for(int it = 0; it < ITERS; it++) {
|
|
z_r_2 = FIXED_MULTIPLY(z_r, z_r);
|
|
z_i_2 = FIXED_MULTIPLY(z_i, z_i);
|
|
|
|
zn_r = z_r_2 - z_i_2 + c.r;
|
|
|
|
#ifdef SHIP
|
|
zn_i = abs(FIXED_MULTIPLY((DOUBLE_TO_FIXED(2)), (FIXED_MULTIPLY(z_r, z_i)))) + c.i;
|
|
#else
|
|
zn_i = (FIXED_MULTIPLY((DOUBLE_TO_FIXED(2)), (FIXED_MULTIPLY(z_r, z_i)))) + c.i;
|
|
#endif
|
|
|
|
z_i = zn_i;
|
|
z_r = zn_r;
|
|
|
|
if(z_i_2 + z_r_2 > INFTY_SQR_FIXED) return it;
|
|
}
|
|
return ITERS;
|
|
}
|
|
|
|
//blllluuuuurg, matracies and vectors in raylib are floats and we need doubles
|
|
void shift_cam(struct camera *cam, double step_r, double step_i) {
|
|
double i_offset = (cam->max_i - cam->min_i) * step_i;
|
|
double r_offset = (cam->max_r - cam->min_r) * step_r;
|
|
cam->min_i += i_offset;
|
|
cam->max_i += i_offset;
|
|
cam->min_r += r_offset;
|
|
cam->max_r += r_offset;
|
|
}
|
|
|
|
void zoom_cam(struct camera *cam, double zoom) {
|
|
double i_scale = (cam->max_i - cam->min_i) * zoom;
|
|
double r_scale = (cam->max_r - cam->min_r) * zoom;
|
|
cam->min_i += i_scale;
|
|
cam->max_i -= i_scale;
|
|
cam->min_r += r_scale;
|
|
cam->max_r -= r_scale;
|
|
}
|
|
|
|
enum DIRECTIONS {
|
|
N, NE, E, SE, S, SW, W, NW
|
|
};
|
|
|
|
|
|
//we can inline these if needed
|
|
|
|
inline bool bitarray_check(uint8_t *array, size_t i) {
|
|
return array[i/8] & (1 << (i%8));
|
|
}
|
|
|
|
inline void bitarray_set(uint8_t *array, size_t i) {
|
|
array[i/8] |= (1 << (i%8));
|
|
}
|
|
|
|
inline FixedCord get_neighbor_coord(FixedCord from_coord, int direction, FixedCord step) {
|
|
if((direction == NW) || (direction < E)) from_coord.i += step.i;
|
|
if((direction > N) && (direction < S)) from_coord.r += step.r;
|
|
if((direction > E) && (direction < W)) from_coord.i -= step.i;
|
|
if(direction > S) from_coord.r -= step.r;
|
|
return from_coord;
|
|
}
|
|
FixedCord get_neighbor_coord(FixedCord from_coord, int direction, FixedCord step);
|
|
|
|
|
|
size_t get_neighbor_index(size_t from_pixel, int direction) {
|
|
const int neighbor_index_accl[8] =
|
|
{-RES_X, -RES_X + 1, 1, RES_X + 1, RES_X, RES_X - 1, -1, -RES_X - 1};
|
|
from_pixel += neighbor_index_accl[direction];
|
|
//canidate for optimization; lots of branches. maybe inline
|
|
return from_pixel;
|
|
}
|
|
|
|
//we'll be storing info in the green channel to utalize available memory
|
|
//per pixel.
|
|
|
|
#define BACKSTACK_SIZE 32
|
|
#define GCHAN_UNRENDERED 0 //don't change; green channel zero'd on cam move
|
|
#define GCHAN_BLOCKED (1 << 7) //interior element or visiteed
|
|
#define GCHAN_INTERNAL (1 << 5) //part of set, 0x20
|
|
#define GCHAN_EXTERNAL (1 << 0) //not part of set, 0x10
|
|
#define GCHAN_INNER_VISITED (1 << 3)
|
|
#define GCHAN_INNER_CLOSED (1 << 2)
|
|
|
|
|
|
/**
|
|
void switch_pixel(coord &this_coord, const coord step, size_t this_index, int dir) {
|
|
|
|
}
|
|
**/
|
|
|
|
void debug_step(Color *pix, Texture *tex, size_t index, bool pause) {
|
|
return;
|
|
// SetTargetFPS(0);
|
|
static bool fuckin_manual_pause_iguess = false;
|
|
static Camera2D cam = {0};
|
|
if(!cam.zoom) cam.zoom = (float)GetRenderWidth()/RES_X;
|
|
static int debug_color = 0;
|
|
const float dbg_cam_step = 100;
|
|
const float dbg_cam_zoom = 1.5;
|
|
|
|
(pause || fuckin_manual_pause_iguess) ? SetTargetFPS(60) : SetTargetFPS(0);
|
|
|
|
|
|
|
|
for(;;) {
|
|
switch(GetKeyPressed()) {
|
|
case KEY_UP:
|
|
cam.offset.y += dbg_cam_step;
|
|
break;
|
|
case KEY_DOWN:
|
|
cam.offset.y -= dbg_cam_step;
|
|
break;
|
|
case KEY_RIGHT:
|
|
cam.offset.x += dbg_cam_step;
|
|
break;
|
|
case KEY_LEFT:
|
|
cam.offset.x -= dbg_cam_step;
|
|
break;
|
|
case KEY_W:
|
|
cam.zoom *= dbg_cam_zoom;
|
|
break;
|
|
case KEY_S:
|
|
cam.zoom /= dbg_cam_zoom;
|
|
break;
|
|
case KEY_SPACE:
|
|
Vector2 mouse_pos = Vector2Multiply(GetMousePosition(), (Vector2){(double)RES_X / WINDOW_SIZE_X, (double)RES_Y / WINDOW_SIZE_Y});
|
|
//mouse_pos = Vector2Divide(mouse_pos, (Vector2){cam.zoom, cam.zoom});
|
|
printf("%f, %f (%lu)\n", mouse_pos.x, mouse_pos.y, ((size_t)mouse_pos.y * RES_X) + (size_t)mouse_pos.x);
|
|
break;
|
|
case KEY_ENTER:
|
|
return;
|
|
default:
|
|
BeginDrawing();
|
|
pix[index] =
|
|
(Color) {debug_color, pix[index].g, 0, 255};
|
|
BeginDrawing();
|
|
UpdateTexture(*tex, pix);
|
|
DrawTextureEx(*tex, (Vector2)
|
|
{0 - cam.offset.x, cam.offset.y}, 0,
|
|
cam.zoom, WHITE);
|
|
EndDrawing();
|
|
if(!pause && !fuckin_manual_pause_iguess) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//only need four indecies, however we use 8 because it's more convinient.
|
|
void detect_borders(bool borders[8], size_t i) {
|
|
//if this is too slow, it's easy to do it without the modulos.
|
|
int index_mod = i % RES_X;
|
|
bzero(borders, sizeof(*borders) * 8);
|
|
if((i + RES_X) > (RES_X * RES_Y)) {
|
|
for(int nei_dir = SE; nei_dir <= SW; nei_dir++)
|
|
borders[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
else if(((int)i - RES_X) < 0) {
|
|
borders[NE] = GCHAN_EXTERNAL;
|
|
borders[N] = GCHAN_EXTERNAL;
|
|
borders[NW] = GCHAN_EXTERNAL;
|
|
}
|
|
if(index_mod == 0) {
|
|
for(int nei_dir = SW; nei_dir < NW; nei_dir++)
|
|
borders[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
else if(index_mod == (RES_X - 1)) {
|
|
for(int nei_dir = NE; nei_dir < SE; nei_dir++)
|
|
borders[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
|
|
/**
|
|
//runs into occational percision issues
|
|
if((this_coord.i - scale.i) <= cam_bord_fixed_s) {
|
|
for(int nei_dir = SE; nei_dir <= SW; nei_dir++)
|
|
nei_presort[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
else if((this_coord.i + scale.i) >= cam_bord_fixed_n) {
|
|
printf("bruh\n");
|
|
nei_presort[NE] = GCHAN_EXTERNAL;
|
|
nei_presort[N] = GCHAN_EXTERNAL;
|
|
nei_presort[NW] = GCHAN_EXTERNAL;
|
|
}
|
|
if((this_coord.r - scale.r) <= cam_bord_fixed_w) {
|
|
for(int nei_dir = SW; nei_dir < NW; nei_dir++)
|
|
nei_presort[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
else if((this_coord.r + scale.r) >= cam_bord_fixed_e) {
|
|
for(int nei_dir = NE; nei_dir < SE; nei_dir++)
|
|
nei_presort[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
**/
|
|
}
|
|
|
|
void debug_nei_arrays(int *priority, int *presort, size_t index) {
|
|
int debug_x = index % RES_X;
|
|
int debug_y = index / RES_X;
|
|
printf("(%i, %i) %lu: pre [", debug_x, debug_y, index);
|
|
for(int nd = 0; nd < 8; nd++) printf("%i, ", presort[nd]);
|
|
printf("], pri [");
|
|
for(int nd = 0; nd < 8; nd++) printf("%i, ", priority[nd]);
|
|
printf("]\n");
|
|
}
|
|
|
|
enum {
|
|
SCAN_MODE_NONE,
|
|
SCAN_MODE_SAFE,
|
|
SCAN_MODE_INTERIOR
|
|
} scan_mode;
|
|
|
|
unsigned int mandelbrot_bordertrace(struct camera *cam, Color *pixels) {
|
|
//these lookup tables r cheap cuz on the stm32f1, 1 memory read is 1 instruction
|
|
FixedCord scale = {
|
|
.r = DOUBLE_TO_FIXED((cam->max_r - cam->min_r) / (double)RES_X),
|
|
.i = DOUBLE_TO_FIXED((cam->max_i - cam->min_i) / (double)RES_Y)};
|
|
FixedCord c = {.r = 0, .i = DOUBLE_TO_FIXED(cam->max_i)};
|
|
unsigned int total_iters = 0;
|
|
size_t on_pixel = 0;
|
|
int border_scanning = 0;
|
|
|
|
|
|
|
|
Image img = GenImageColor(RES_X, RES_Y, BLUE);
|
|
Texture debug_tex = LoadTextureFromImage(img);
|
|
UnloadImage(img);
|
|
// bzero(pixels, RES_X * RES_Y * sizeof(Color));
|
|
// for(size_t c = 0; c < (RES_X * RES_Y); c++) pixels[c] = (Color){0,0,0,255};
|
|
|
|
|
|
for(int y = 0; y < RES_Y; y++) {
|
|
border_scanning = 0;
|
|
for(int x = 0; x < RES_X; x++) {
|
|
|
|
c.r = DOUBLE_TO_FIXED((((on_pixel % RES_X) / (double)RES_X) * (cam->max_r - cam->min_r)) + cam->min_r);
|
|
c.i = DOUBLE_TO_FIXED((((on_pixel / (double)RES_X) / (double)RES_Y) * (cam->min_i - cam->max_i)) + cam->max_i);
|
|
|
|
/**
|
|
SetTargetFPS(0);
|
|
BeginDrawing();
|
|
UpdateTexture(debug_tex, pixels);
|
|
DrawTextureEx(debug_tex, (Vector2){0,0}, 0, (float)GetRenderWidth()/RES_X, WHITE);
|
|
EndDrawing();
|
|
**/
|
|
|
|
switch(pixels[on_pixel].g) {
|
|
case GCHAN_INTERNAL:
|
|
// printf("starting interior trace...\n");
|
|
size_t inner_pix_i = on_pixel;
|
|
int next_pix;
|
|
bool pass = false;
|
|
bool start_detached = false;
|
|
bool touching_start;
|
|
bool borders[8];
|
|
int nei_dir;
|
|
size_t nei_i;
|
|
|
|
bool trusted_nei[8];
|
|
|
|
{
|
|
//TODO
|
|
detect_borders(borders, on_pixel);
|
|
for(nei_dir = 0; nei_dir < 8; nei_dir += 2) if(borders[nei_dir]) break;
|
|
|
|
|
|
int edge_state = 0;
|
|
bool first_unrendered = false;
|
|
for(nei_dir = 0; nei_dir < 8; nei_dir += 2) {
|
|
nei_i = get_neighbor_index(inner_pix_i, nei_dir);
|
|
if((nei_dir == 0) && (pixels[nei_i].g == GCHAN_UNRENDERED)) first_unrendered = true;
|
|
if((edge_state & 1) && (pixels[nei_i].g != GCHAN_UNRENDERED)) edge_state++;
|
|
else if(!(edge_state & 1) && (pixels[nei_i].g == GCHAN_UNRENDERED)) edge_state++;
|
|
}
|
|
//tired, easier to think of success states
|
|
if(!((edge_state == 1)
|
|
|| ((edge_state == 2) && (!first_unrendered && pixels[nei_i].g != GCHAN_UNRENDERED))
|
|
|| ((edge_state == 3) && (first_unrendered && pixels[nei_i].g == GCHAN_UNRENDERED)))) break;
|
|
}
|
|
for(nei_dir = 0; nei_dir < 8; nei_dir++) {
|
|
nei_i = get_neighbor_index(inner_pix_i, nei_dir);
|
|
if(pixels[nei_i].g == GCHAN_UNRENDERED) trusted_nei[nei_dir] = true;
|
|
else trusted_nei[nei_dir] = false;
|
|
}
|
|
|
|
while(true) {
|
|
detect_borders(borders, inner_pix_i);
|
|
|
|
next_pix = -1;
|
|
touching_start = false;
|
|
//debug_step(pixels, &debug_tex, inner_pix_i, true);
|
|
for(nei_dir = 0; nei_dir < 8; nei_dir += 2) {
|
|
size_t nei_i;
|
|
size_t localized_dirs[8];
|
|
|
|
if(borders[nei_dir]) continue;
|
|
nei_i = get_neighbor_index(inner_pix_i, nei_dir);
|
|
if(nei_i == on_pixel) {
|
|
touching_start = true;
|
|
if(start_detached) {
|
|
next_pix = on_pixel;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
if(pixels[nei_i].g != ((pass) ? GCHAN_INNER_VISITED : GCHAN_INTERNAL)) continue;
|
|
//if((pixels[nei_i].g == GCHAN_UNRENDERED) || (pixels[nei_i].g == ((pass) ? GCHAN_INNER_CLOSED : GCHAN_INNER_VISITED))) continue;
|
|
|
|
for(int i = 0; i < 8; i++) localized_dirs[i] = mod(nei_dir + i, 8);
|
|
if(!(trusted_nei[localized_dirs[2]] || trusted_nei[localized_dirs[1]] ||
|
|
trusted_nei[localized_dirs[6]] || trusted_nei[localized_dirs[7]])) {
|
|
continue;
|
|
}
|
|
/** TODO if we have time, we can only keep track of safe borders when we get in trouble by looking at
|
|
the past pixel. This has a lot of overhead, but I did it before thinking & I'm out of resources.
|
|
**/
|
|
trusted_nei[localized_dirs[4]] = false;
|
|
trusted_nei[localized_dirs[3]] = trusted_nei[localized_dirs[2]];
|
|
trusted_nei[localized_dirs[2]] = trusted_nei[localized_dirs[1]];
|
|
trusted_nei[localized_dirs[5]] = trusted_nei[localized_dirs[6]];
|
|
trusted_nei[localized_dirs[6]] = trusted_nei[localized_dirs[7]];
|
|
{
|
|
bool front_neighbors[5];
|
|
bool local_borders[8];
|
|
detect_borders(local_borders, nei_i);
|
|
for(int nei_edge_dir = -1; nei_edge_dir <= 1; nei_edge_dir++) {
|
|
size_t nei_edge_local = mod(nei_dir + nei_edge_dir, 8);
|
|
front_neighbors[nei_edge_dir + 1] =
|
|
!(local_borders[nei_edge_local] || (pixels[get_neighbor_index(nei_i, nei_edge_local)].g != GCHAN_UNRENDERED));
|
|
}
|
|
front_neighbors[3] = trusted_nei[localized_dirs[6]];
|
|
front_neighbors[4] = trusted_nei[localized_dirs[2]];
|
|
trusted_nei[localized_dirs[7]] = (front_neighbors[0] && (front_neighbors[3] ||
|
|
(front_neighbors[1] && front_neighbors[2] && front_neighbors[4])));
|
|
trusted_nei[localized_dirs[1]] = (front_neighbors[2] && (front_neighbors[4] ||
|
|
(front_neighbors[0] && front_neighbors[1] && front_neighbors[3])));
|
|
trusted_nei[localized_dirs[0]] = (front_neighbors[1] && (trusted_nei[localized_dirs[1]] ||
|
|
trusted_nei[localized_dirs[7]]));
|
|
}
|
|
next_pix = nei_i;
|
|
break;
|
|
}
|
|
if(!start_detached && !touching_start && !(inner_pix_i == on_pixel)) start_detached = true;
|
|
else if(start_detached && touching_start) {
|
|
start_detached = false;
|
|
if(pass) {
|
|
pixels[inner_pix_i].g = GCHAN_INNER_CLOSED;
|
|
pixels[touching_start].g = GCHAN_INNER_CLOSED;
|
|
border_scanning = true;
|
|
debug_step(pixels, &debug_tex, inner_pix_i, true);
|
|
break;
|
|
}
|
|
else {
|
|
pass = true;
|
|
pixels[inner_pix_i].g = GCHAN_INNER_VISITED;
|
|
inner_pix_i = on_pixel;
|
|
continue;
|
|
}
|
|
}
|
|
pixels[inner_pix_i].g = ((pass) ? GCHAN_INNER_CLOSED : GCHAN_INNER_VISITED);
|
|
//TODO remove
|
|
if(pass) pixels[next_pix].r = 0xff;
|
|
else { pixels[next_pix].b = 0xaa; }
|
|
|
|
if(next_pix < 0) {
|
|
debug_step(pixels, &debug_tex, inner_pix_i, true);
|
|
break;
|
|
}
|
|
else {
|
|
inner_pix_i = next_pix;
|
|
}
|
|
}
|
|
break;
|
|
case GCHAN_UNRENDERED:
|
|
if(border_scanning) {
|
|
//pixels[on_pixel] = get_color(ITERS);
|
|
//printf("interior\n");
|
|
pixels[on_pixel] = (Color){0xfe,0,0xfe,0xff};
|
|
break;
|
|
}
|
|
//printf("rendering %i, %i (%lu)\n", x, y, on_pixel);
|
|
int i = iterate(c);
|
|
total_iters += i;
|
|
pixels[on_pixel] = get_color(i);
|
|
if(i == ITERS) {
|
|
FixedCord this_coord = c;
|
|
size_t this_index = on_pixel;
|
|
bool seperated_from_start = false;
|
|
int nei_priority[8];
|
|
int last_nei_priority[8];
|
|
int nei_presort[8];
|
|
|
|
size_t backstack[BACKSTACK_SIZE];
|
|
size_t backstack_i = 0;
|
|
int backstack_calls = 0;
|
|
|
|
int nei_dir;
|
|
|
|
debug_step(pixels, &debug_tex, this_index, false);
|
|
bool debug_mode = false;
|
|
|
|
|
|
|
|
bool borders[8];
|
|
detect_borders(borders, inner_pix_i);
|
|
for(nei_dir = 0; nei_dir < 8; nei_dir++) {
|
|
size_t nei_i;
|
|
if(borders[nei_dir]) break;
|
|
nei_i = get_neighbor_index(on_pixel, nei_dir);
|
|
if(pixels[nei_i].g & GCHAN_EXTERNAL) break;
|
|
}
|
|
|
|
if(nei_dir >= 8) {
|
|
border_scanning = SCAN_MODE_INTERIOR;
|
|
break;
|
|
}
|
|
|
|
while(true) {
|
|
detect_borders(borders, this_index);
|
|
debug_step(pixels, &debug_tex, this_index, false);
|
|
if(debug_mode) debug_step(pixels, &debug_tex, on_pixel, debug_mode);
|
|
|
|
//step 1: check pixels around us, fill in neighbors.
|
|
bzero(nei_presort, sizeof(nei_presort));
|
|
|
|
this_coord.r = DOUBLE_TO_FIXED((((this_index % RES_X) / (double)RES_X) * (cam->max_r - cam->min_r)) + cam->min_r);
|
|
this_coord.i = DOUBLE_TO_FIXED((((this_index / (double)RES_X) / (double)RES_Y) * (cam->min_i - cam->max_i)) + cam->max_i);
|
|
/** now fill in neighbor info based on green channel,
|
|
* iterate if no info available.
|
|
* if this is to slow we could flatten this; it's predictable
|
|
* where there will be info
|
|
**/
|
|
// TODO replace modulos with bitwise ops
|
|
bool start_is_nei = false;
|
|
for(int nei_dir = 0; nei_dir < 8; nei_dir++) {
|
|
size_t nei_i;
|
|
uint8_t gchan_info;
|
|
|
|
//happens if we're pushed against the screen
|
|
if(borders[nei_dir]) {
|
|
nei_presort[nei_dir] = GCHAN_EXTERNAL;
|
|
continue;
|
|
}
|
|
|
|
nei_i = get_neighbor_index(this_index, nei_dir);
|
|
gchan_info = pixels[nei_i].g;
|
|
if(nei_i == on_pixel) start_is_nei = true;
|
|
//note that when we move this over, there will be no alpha channel.
|
|
//gchan_info will be extracted differently!!!
|
|
if(gchan_info) nei_presort[nei_dir] = gchan_info;
|
|
else {
|
|
int i = iterate(get_neighbor_coord(this_coord, nei_dir, scale));
|
|
pixels[nei_i] = get_color(i);
|
|
if(i == ITERS) nei_presort[nei_dir] = GCHAN_INTERNAL;
|
|
else {
|
|
//exterior
|
|
nei_presort[nei_dir] = GCHAN_EXTERNAL;
|
|
}
|
|
pixels[nei_i].g = nei_presort[nei_dir];
|
|
}
|
|
}
|
|
if(!start_is_nei && !seperated_from_start && (this_index != on_pixel)) seperated_from_start = true;
|
|
if(start_is_nei && seperated_from_start) {
|
|
//printf("success!\n");
|
|
pixels[this_index].g = GCHAN_BLOCKED;
|
|
break;
|
|
}
|
|
|
|
//go back if we're in the interior and not an edge
|
|
int edge_cnt = 0;
|
|
//sort into prioraties
|
|
for(int nei_dir = 0; nei_dir < 8; nei_dir += 2) {
|
|
int nei_edge_i;
|
|
if(nei_presort[nei_dir] != GCHAN_INTERNAL) {
|
|
nei_priority[nei_dir] = -1;
|
|
continue;
|
|
}
|
|
|
|
//TODO rename nei_edge_i
|
|
//printf("%i: \n", nei_dir);
|
|
for(nei_edge_i = -2; nei_edge_i <= 2; nei_edge_i++) {
|
|
int nei_edge_mod = mod((nei_dir + nei_edge_i), 8);
|
|
if((nei_presort[nei_edge_mod] == GCHAN_EXTERNAL) || borders[nei_edge_mod]) break;
|
|
}
|
|
if(nei_edge_i > 2) {
|
|
//no edge found
|
|
nei_priority[nei_dir] = -2; //TODO test; remove interior check if nessesary
|
|
continue;
|
|
}
|
|
|
|
//narrow bridge scenario
|
|
if(nei_presort[mod((nei_dir + 1), 8)] & nei_presort[mod((nei_dir - 1), 8)] & GCHAN_EXTERNAL) {
|
|
nei_i = get_neighbor_index(this_index, nei_dir);
|
|
//pixels[nei_i] = (Color) {0xff, pixels[nei_i].g, 0x00, 0xff};
|
|
nei_priority[nei_dir] = -1;
|
|
continue;
|
|
}
|
|
|
|
edge_cnt++;
|
|
nei_priority[nei_dir] = 0;
|
|
}
|
|
if(edge_cnt >= 2) {
|
|
backstack[backstack_i++ % BACKSTACK_SIZE] = this_index;
|
|
//printf("backstack increased\n");
|
|
}
|
|
|
|
//now go to canidate with lowest prioraty
|
|
pixels[this_index].g = GCHAN_BLOCKED;
|
|
for(int priority = 0; priority <= 5; priority++) { //TODO we might not need the priority system anymore
|
|
for(int nei_dir = 0; nei_dir < 8; nei_dir += 2) {
|
|
if(nei_priority[nei_dir] != priority) continue;
|
|
backstack_calls = 0;
|
|
this_index = get_neighbor_index(this_index, nei_dir);
|
|
this_coord = get_neighbor_coord(this_coord, nei_dir, scale);
|
|
//printf("--> (%zu, %zu)\n", this_index % RES_X, this_index / RES_X);
|
|
goto NEXT_PIXEL;
|
|
}
|
|
}
|
|
if((backstack_calls++ > BACKSTACK_SIZE) || (backstack_i < 1)) { //please don't cause issues...
|
|
//printf("cycled through backstack, questionable success...\n");
|
|
break;
|
|
}
|
|
this_index = backstack[--backstack_i % BACKSTACK_SIZE];
|
|
NEXT_PIXEL:
|
|
memcpy(last_nei_priority, nei_priority, sizeof(nei_priority));
|
|
}
|
|
debug_step(pixels, &debug_tex, this_index, true);
|
|
}
|
|
else pixels[on_pixel].g = GCHAN_EXTERNAL;
|
|
break;
|
|
case GCHAN_INNER_CLOSED:
|
|
//printf("bruh\n");
|
|
if(((x + 2) < RES_X) && (pixels[on_pixel + 1].g == GCHAN_UNRENDERED)) border_scanning = SCAN_MODE_NONE;
|
|
break;
|
|
default:
|
|
border_scanning = SCAN_MODE_NONE;
|
|
}
|
|
on_pixel++;
|
|
c.r += scale.r;
|
|
//printf("%u\n", on_pixel);
|
|
}
|
|
border_scanning = false;
|
|
}
|
|
debug_step(pixels, &debug_tex, 0, true);
|
|
for(size_t i = 0; i < (RES_X * RES_Y); i++) pixels[i].g = 0;
|
|
return total_iters;
|
|
}
|
|
|
|
unsigned int mandelbrot_unoptimized(struct camera *cam, Color *pixels) {
|
|
FixedCord scale = {
|
|
.r = DOUBLE_TO_FIXED((cam->max_r - cam->min_r) / (double)RES_X),
|
|
.i = DOUBLE_TO_FIXED((cam->max_i - cam->min_i) / (double)RES_Y)};
|
|
FixedCord c = { .r = DOUBLE_TO_FIXED(cam->min_r), .i = DOUBLE_TO_FIXED(cam->max_i) };
|
|
unsigned int total_iters = 0;
|
|
size_t on_pixel = 0;
|
|
for(int y = 0; y < RES_Y; y++) {
|
|
c.r = DOUBLE_TO_FIXED(cam->min_r);
|
|
for(int x = 0; x < RES_X; x++) {
|
|
int i = iterate(c);
|
|
c.r = DOUBLE_TO_FIXED((((on_pixel % RES_X) / (double)RES_X) * (cam->max_r - cam->min_r)) + cam->min_r);
|
|
c.i = DOUBLE_TO_FIXED((((on_pixel / (double)RES_X) / (double)RES_Y) * (cam->min_i - cam->max_i)) + cam->max_i);
|
|
total_iters += i;
|
|
pixels[((y * RES_X) + x)] = get_color(i);
|
|
on_pixel++;
|
|
// c.r += scale.r;
|
|
}
|
|
c.i -= scale.i;
|
|
}
|
|
return total_iters;
|
|
}
|
|
|
|
int main() {
|
|
//test();
|
|
//return 0;
|
|
Color *pixels_unoptimized = malloc(RES_X * RES_Y * sizeof(Color));
|
|
Color *pixels_optimized = malloc(RES_X * RES_Y * sizeof(Color));
|
|
bool optimized = true;
|
|
//(1.514379082621093886019, 0.000033222739567139065) - (1.514381385800912305228, 0.000034374329476534746)
|
|
|
|
struct camera cam_default = {
|
|
.min_r = -1,
|
|
.max_r = 1
|
|
};
|
|
cam_default.min_i = ((double)RES_Y / RES_X) * cam_default.min_r;
|
|
cam_default.max_i = ((double)RES_Y / RES_X) * cam_default.max_r;
|
|
|
|
|
|
//done
|
|
//.min_r = 0.340060821337554164412, .min_i = -0.076399869494282027227, .max_r = 0.340671385211165078655, .max_i = -0.076094587557451340287
|
|
|
|
//done
|
|
//.min_r = 0.348347456407892719366, .min_i = -0.092130353675640097588, .max_r = 0.349033773135021985201, .max_i = -0.091787195312047098472
|
|
|
|
|
|
//has internal noise
|
|
//.min_r = 0.348416088080605645949, .min_i = -0.092130353675640097588, .max_r = 0.349102404807734911785, .max_i = -0.091787195312047098472
|
|
|
|
//needs diagnol transfer
|
|
//.min_r = 0.352126044212195454808, .min_i = -0.101818891004586714599, .max_r = 0.354169737175103083171, .max_i = -0.100797044523048578979
|
|
|
|
//works
|
|
//.min_r = 1.514379082621093886019, .min_i = 0.000033222739567139065, .max_r = 1.514381385800912305228, .max_i = 0.000034374329476534746
|
|
|
|
// unusual issue; complete rendered border
|
|
// .min_r = 0.426539347230382670517, .min_i = 0.218210183100018217939, .max_r = 0.427445609943903681582, .max_i = 0.218663314456816582076
|
|
|
|
|
|
|
|
struct camera cam = {
|
|
//.min_r = 0.348416088080605645949, .min_i = -0.092130353675640097588, .max_r = 0.349102404807734911785, .max_i = -0.091787195312047098472
|
|
.min_r = 0.348347456407892719366, .min_i = -0.092130353675640097588, .max_r = 0.349033773135021985201, .max_i = -0.091787195312047098472
|
|
};
|
|
InitWindow(WINDOW_SIZE_X, WINDOW_SIZE_Y, "mandelbrot fixed point test");
|
|
SetTraceLogLevel(LOG_ERROR);
|
|
|
|
Image img = GenImageColor(RES_X, RES_Y, BLUE);
|
|
Texture tex = LoadTextureFromImage(img);
|
|
UnloadImage(img);
|
|
|
|
SetTargetFPS(60);
|
|
|
|
while(!WindowShouldClose()) {
|
|
switch(GetKeyPressed()) {
|
|
case KEY_UP:
|
|
shift_cam(&cam, 0, STEP_SIZE);
|
|
break;
|
|
case KEY_DOWN:
|
|
shift_cam(&cam, 0, -STEP_SIZE);
|
|
break;
|
|
case KEY_RIGHT:
|
|
shift_cam(&cam, STEP_SIZE, 0);
|
|
break;
|
|
case KEY_LEFT:
|
|
shift_cam(&cam, -STEP_SIZE, 0);
|
|
break;
|
|
case KEY_W:
|
|
zoom_cam(&cam, ZOOM_SIZE);
|
|
break;
|
|
case KEY_S:
|
|
zoom_cam(&cam, -ZOOM_SIZE);
|
|
break;
|
|
case KEY_SPACE:
|
|
optimized = !optimized;
|
|
break;
|
|
default:
|
|
BeginDrawing();
|
|
EndDrawing();
|
|
continue;
|
|
break;
|
|
}
|
|
printf(".min_r = %.21f, .min_i = %.21f, .max_r = %.21f, .max_i = %.21f\n", cam.min_r, cam.min_i, cam.max_r, cam.max_i);
|
|
|
|
|
|
clock_t begin, end;
|
|
double time_unoptimized;
|
|
double time_optimized;
|
|
|
|
for(int i = 0; i < (RES_X * RES_Y); i++) { pixels_unoptimized[i] = (Color){0, 0, 0, 0xff}; }
|
|
for(int i = 0; i < (RES_X * RES_Y); i++) { pixels_optimized[i] = (Color){0, 0, 0, 0xff}; }
|
|
|
|
begin = clock();
|
|
unsigned int unoptimized_iters = mandelbrot_unoptimized(&cam, pixels_unoptimized);
|
|
end = clock();
|
|
|
|
time_unoptimized = (double)(end - begin) / CLOCKS_PER_SEC;
|
|
printf("Unoptimized: %u iterations, %f seconds\n", unoptimized_iters, time_unoptimized);
|
|
|
|
begin = clock();
|
|
unsigned int optimized_iters = mandelbrot_bordertrace(&cam, pixels_optimized);
|
|
end = clock();
|
|
|
|
time_optimized = (double)(end - begin) / CLOCKS_PER_SEC;
|
|
printf("Border tracing: %u iterations, %f seconds\n", optimized_iters, time_optimized);
|
|
|
|
printf("border tracing does %f%% of nieve approach\n", ((float)optimized_iters / unoptimized_iters) * 100);
|
|
|
|
BeginDrawing();
|
|
printf("%s\n", optimized ? "optimized mode" : "unoptimized mode");
|
|
UpdateTexture(tex, optimized ? pixels_optimized : pixels_unoptimized);
|
|
DrawTextureEx(tex, (Vector2){0,0}, 0, (float)GetRenderWidth()/RES_X, WHITE);
|
|
EndDrawing();
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|