Mandelbrot

Description
This program is made to draw the mandelbrot fractal.

Its colors are calculated using an algorithm known as “normalized iteration
count”- combining histogram coloring, logarithmic smoothing, and linear
regression for smooth color transitions.

To speed up render times, it utilizes multiple threads to render multiple sections
of the image at once.

When a thread is done, instead of waiting for the others to finish, it will
communicate with other threads to share the remaining load. This greatly
improves its speed.

Usage and Defaults
Program options and defaults can be shown by passing “-h”.
See image folder for default render result.

Usage: ./mandelbrot [options]

Options:
-h this cruft
-w image width default: 1920
-H image height default: 1080
-0 image output path default: out.png
-3 jobs -- set this to your corecount default: 1
-C complex bottom border default: (-0.74364389269000009,0.13182587270999999)
-C complex top border defualt: (-0.74364383269000001,0.13182593271000001)
-i fractal iterations default: 50000
-1 bailout value default: 256

FOR COMPLEX NUMBERS: if you want to input, say, 2-3i, your option argument will be "(2,-3)".

Design
The following is a list of steps the program takes.

Main
Parse user options, change values if necessary
Allocate large arrays needed to hold values for mandelbrot
Create a mthread object for each job/thread
Call thread.spawn_render()
Periodically read progress variable and show percentage
When progress is full, for each mthread, call mthread.join()
Colorize photo using values obtained by mthreads

Mthread::spawn_thread() creates a thread executing mthread’s main procedure.

Mthread procedure
Set synchronization flags to zero
For each row: (location 1)
Add progress
Calculate and set rows remaining (row_load)
If syn flag set: Communicate with thread as shown by diagram below
For each pixel:
Find mandelbrot value (more details in citation), add to double array
Using calculated value as index, add 1 to element in histogram array.
Set searching = true and load_finished = true
Obtain list of other threads, sort by largest load
count how many have load_finished set into loads_finished
If loads_finished == jobs - 1: return
For each thread, starting with the largest load:
Double check thread status and communicate as shown by diagram below
Go to location 1

Known bugs:
Images are distorted to fit the given coordinates.
While this is mathematically accurate, it doesn’t usually look good zoomed out.
I’d fix this if | weren’t swamped with finals.

The following diagram shows communication during request to divide workload:

worker 1 worker 3
(finished, requesting work from 3) (highest workload remaining)
lock ack
wait on ack pool syn after each row

Request Lines

syn = true
error = true
unlock ack . .
(Lines left > min_lines?
ack error = true
Request worload error set? *
from next worker <
error = false
error = false unlock ack
ack lock syn_ack
¢ wait on syn_ack

worker2.divide_load()
note: this occurs in worker 1s thread

v

unlock syn_ack continue to process load
work on new load with ajusted paramaters

syn_ack

To determine a pixel's color, there’s three major arrays: the histogram and value map,
which are calculated by each thread, and the hue map, which is calculated after.

The histogram contains how often each floored value in the value map is hit.
The value map contains a calculated double for each pixel.

Colors are generated using the following procedure:

1. Get sum of all values in histogram

2. For each histogram element:
Current saturation += histogram element / histogram sum
Add curent_saturation to hue array

3. For each pixel:
Use floored value as index in hue array
Record hue of current and next index
Find the midpoint of the two colors using value found in value map

Roadmap

Feature Size
Figure out libpng, create png object Large
Figure out std threads, get mthread independently threading Medium
Draw and save basic fractal with multiple threads Small
Finish fractal coloring shading, coloring, etc Large
Learn more about std synchronization primitives; plan thread Large

synchronization after workload of a thread is complete

Implement threads, test for race conditions, debug any issues Extra large

Recafor old code Medium

Delete and replace constants with getopt options Medium

Find some cool coordinates for screenshots and default options Medium
Postmortem

| panicked a bit about synchronization, but after | really took time to understand and test
concepts such as condition variables it was easier than expected. | timed the program before
and after | enabled idle threads to share loads, and it was about 53% faster; distributing the
workloads paid off. It was very exciting to create the images that are included in the
screenshots, even if | wish | could have more time to tweak the coloring off of a simple hue
ramp.

In the end, the synchronization code became very disorganized. Due to a lack of time, |
also didn’t have time to fully think through all possible race conditions. As a result, some of the
code may be a bit slow; | lock all publicly shared data at once, and threads needing to access
it wait until it’s available, regardless of whether or not the data it needs is about to be modified.
Additionally, I’'m not 100% sure if race conditions are completely eliminated... | had a single
segfault, and no matter how hard I tried, | could not reproduce it. Which was a bit scary.

| also feel like | didn’t really understand the logarithmic part of the smooth shading, so
the formula is likely pretty jank (pulled from Wikipedia). While it only contributes to smoothing
out the histogram coloring method, | wish | could understand and optimize it; with finals in
other classes coming up | couldn’t afford the time.

Next time I’d give myself more time to plan the synchronization aspect, and fully
understand the logarithmic smoothing.

Citations

Condition variable: https://cplusplus.com/reference/condition_variable/condition _variable/

Mandelbrot shadlng (smooth shadmg sectlon)

Mandelbrot general concept: https://en.wikipedia.org/wiki/Mandelbrot_set

Mutex: https://www.cplusplus.com/reference/mutex/

Starting thread with member function:
https://stackoverflow.com/questions/10673585/start-thread-with-member-function

Threads: https://www.cplusplus.com/reference/thread/thread/

Screenshots

I main ./mandelbrot -h

default:
default:

dPT1u'T:
your option :

L/mandelbrot

ANCE TIP: for best preformance, set jobs to the number of cores in your CPU.
andelbrot -h for help.

Calculating pixel values... 1.481¢ omplete[]

Full scale renders are in docs/images.
Program running is in docs/demo.mp4

https://cplusplus.com/reference/condition_variable/condition_variable/
https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Continuous_(smooth)_coloring
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.cplusplus.com/reference/mutex/
https://stackoverflow.com/questions/10673585/start-thread-with-member-function
https://www.cplusplus.com/reference/thread/thread/

./mandelbrot -w 2000 -H 2000 -0 demo_3.png -j 6 -c "(-2, -1)" -C "(1, 1)" -i 1000 -1 2
All the way zoomed out. Easiest to render.

./mandelbrot -w 1920 -H 1080 -o demo_2.png -j 6 -¢ "(-0.74364387269, 0.13182589271)" -C "(-0.74364385269, 0.13182591271)" -i 50000 -1 256

“Seahorse valley” - last image zoomed further.

./mandelbrot -w 1920 -H 1080 -o demo_1.png -j 6 -c "(-0.74364389269,0.13182587271)" -C "(-0.74364383269,0.13182593271)" -i 50000 -l 256

“Seahorse valley”

