finished functions to achieve polymorphism

This commit is contained in:
Brett Weiland 2023-01-23 14:43:30 -06:00
parent 61bd7df99d
commit 3b97e627ca
4 changed files with 410 additions and 161 deletions

Binary file not shown.

View File

@ -30,7 +30,7 @@ mthread::mthread(
void mthread::dispatch() {
if((my_thread) && (my_thread->joinable())) delete my_thread;
my_thread = new thread([this] {render();});
my_thread = new thread([this] {run();});
}
@ -46,185 +46,163 @@ void mthread::join() {
if((my_thread) && (my_thread->joinable())) my_thread->join();
}
//TODO make final
//looks for work
void mthread::find_work() {
bool mthread::find_work() {
unsigned int worker, workers_finished;
uint32_t loads[worker_cnt];
struct mthread_status *peer_status;
struct mthread_divinfo divinfo;
workers_finished = 0;
unique_lock<mutex> ack;
status.status_lock.lock();
status.searching = true;
status.share_finished = true;
status.status_lock.unlock();
//TODO do we really need this whole for loop?
for(worker = 0; worker < worker_cnt; worker++) {
//lock other worker so we can request from them
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//if they're done, we remember that to see if we exit
if((peer_status->share_finished) && (worker != id)) {
workers_finished++;
}
//if they're us, currently looking for work,
//or don't have enough work for us to complete, then skip
if((worker == id) ||
(peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
//finally, if they're valid, write them down
loads[worker] = peer_status->row_load;
peer_status->status_lock.unlock();
}
//exit if all workers are finished
if(workers_finished >= worker_cnt - 1) {
return false;
}
//then we look over and pick our canidates
for(;;) {
//find the worker who has the biggest workload
worker = distance(loads, max_element(loads, &loads[worker_cnt]));
if(!loads[worker]) break; //we have found a worker; distance is 0
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//check to see if canidate is valid.
//TODO do we really need to check the first time?
if((peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
ack = unique_lock<mutex>(peer_status->ack_lk);
peer_status->div_syn = true;
peer_status->status_lock.unlock();
peer_status->msg_notify.wait(ack);
ack.unlock();
if(peer_status->div_error) {
loads[worker] = 0;
peer_status->status_lock.lock();
peer_status->div_error = false;
peer_status->div_syn = false;
peer_status->status_lock.unlock();
continue;
}
divinfo = workers[worker]->divide();
peer_status->syn_ack_lk.unlock();
peer_status->msg_notify.notify_all();
y_min = divinfo.y_min;
y_max = divinfo.y_max;
x_min = divinfo.x_min;
x_max = divinfo.x_max;
status.status_lock.lock();
status.searching = false;
status.status_lock.unlock();
break;
}
return true;
}
//makes sure no one is asking for work from us
void mthread::check_work_request() {
unique_lock<mutex> syn_ack;
status.status_lock.lock();
status.row_load = y_max - on_y;
//check if anyone's asking us to divide
if(status.div_syn) {
status.div_error = status.row_load <= min_lines;
if(status.div_error) {
status.ack_lk.unlock();
status.msg_notify.notify_all();
}
else {
syn_ack = unique_lock<mutex>(status.syn_ack_lk);
status.ack_lk.unlock();
status.msg_notify.notify_all();
status.msg_notify.wait(syn_ack);
status.row_load = y_max - on_y;
syn_ack.unlock();
//new x/y min/max is ajusted by other thread, we can continue as normal.
}
}
status.status_lock.unlock();
}
//renders area
void mthread::render_area() { //TODO rename
void mthread::render_area() {
uint32_t image_width = image.width();
unsigned int iter;
complex<double> c, a; //TODO comment
double pixel_value;
for(on_y = y_min; on_y < y_max; on_y++) {
progress++;
check_work_request();
for(on_x = x_min; on_x < x_max; on_x++) {
c = (step * complex<double>(on_x,on_y)) + c_min;
a = 0;
for(iter = 0; iter < max_iter; iter++) {
if(abs(a) >= inf_cutoff) break;
a = a*a + c;
}
if(iter >= max_iter) {
iter = 0;
vmap[(on_y * image_width) + on_x] = 0;
}
else {
pixel_value = (iter + 1) - (log((log(pow(abs(a), 2.0)) / 2.0) / log(2.0)));
vmap[(on_y * image_width) + on_x] = pixel_value;
histogram[(int)pixel_value]++;
}
}
}
}
//alternates states of finding work work and rendering
void mthread::run() {
for(;;) {
}
}
//TODO move syncronization to another function for extensibility
void mthread::render() {
uint32_t image_width = image.width();
unsigned int iter;
unsigned int worker, workers_finished;
uint32_t loads[worker_cnt];
double pixel_value;
complex<double> c, a;
struct mthread_status *peer_status;
struct mthread_divinfo divinfo;
unique_lock<mutex> ack;
unique_lock<mutex> syn_ack;
status.status_lock.lock();
status.status_lock.lock(); //TODO move to initilizer
status.searching = false;
status.share_finished = false;
status.div_syn = false;
status.div_error = false;
status.status_lock.unlock();
do {
render_area();
} while (find_work());
y_min = 0;
y_max = image.height();
for(;;) {
//thread is actively rendering
for(on_y = y_min; on_y < y_max; on_y++) {
progress++;
status.status_lock.lock();
status.row_load = y_max - on_y;
//check if anyone's asking us to divide
if(status.div_syn) {
status.div_error = status.row_load <= min_lines;
if(status.div_error) {
status.ack_lk.unlock();
status.msg_notify.notify_all();
}
else {
syn_ack = unique_lock<mutex>(status.syn_ack_lk);
status.ack_lk.unlock();
status.msg_notify.notify_all();
status.msg_notify.wait(syn_ack);
status.row_load = y_max - on_y;
syn_ack.unlock();
//new x/y min/max is ajusted by other thread, we can continue as normal.
}
}
status.status_lock.unlock();
for(on_x = x_min; on_x < x_max; on_x++) {
c = (step * complex<double>(on_x,on_y)) + c_min;
a = 0;
for(iter = 0; iter < max_iter; iter++) {
if(abs(a) >= inf_cutoff) break;
a = a*a + c;
}
if(iter >= max_iter) {
iter = 0;
vmap[(on_y * image_width) + on_x] = 0;
}
else {
pixel_value = (iter + 1) - (log((log(pow(abs(a), 2.0)) / 2.0) / log(2.0)));
vmap[(on_y * image_width) + on_x] = pixel_value;
histogram[(int)pixel_value]++;
}
}
}
//thread is now searching for work
/** 2022 comment:
* this state should have been moved to a seperate function to allow rendering methods to differ
* from inherited mthreads without needing to reimpliment searching **/
status.status_lock.lock();
status.searching = true;
status.share_finished = true;
status.status_lock.unlock();
//first we look over all workers to see which are canidates to ask for work
while(status.searching) {
workers_finished = 0;
//TODO do we really need this whole for loop?
for(worker = 0; worker < worker_cnt; worker++) {
//lock other worker so we can request from them
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//if they're done, we remember that to see if we exit
if((peer_status->share_finished) && (worker != id)) {
workers_finished++;
}
//if they're us, currently looking for work,
//or don't have enough work for us to complete, then skip
if((worker == id) ||
(peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
//finally, if they're valid, write them down
loads[worker] = peer_status->row_load;
peer_status->status_lock.unlock();
}
//exit if all workers are finished
if(workers_finished >= worker_cnt - 1) {
return;
}
//then we look over and pick our canidates
for(;;) {
//find the worker who has the biggest workload
worker = distance(loads, max_element(loads, &loads[worker_cnt]));
if(!loads[worker]) break; //we have found a worker; distance is 0
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//check to see if canidate is valid.
//TODO do we really need to check the first time?
if((peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
ack = unique_lock<mutex>(peer_status->ack_lk);
peer_status->div_syn = true;
peer_status->status_lock.unlock();
peer_status->msg_notify.wait(ack);
ack.unlock();
if(peer_status->div_error) {
loads[worker] = 0;
peer_status->status_lock.lock();
peer_status->div_error = false;
peer_status->div_syn = false;
peer_status->status_lock.unlock();
continue;
}
divinfo = workers[worker]->divide();
peer_status->syn_ack_lk.unlock();
peer_status->msg_notify.notify_all();
y_min = divinfo.y_min;
y_max = divinfo.y_max;
x_min = divinfo.x_min;
x_max = divinfo.x_max;
status.status_lock.lock();
status.searching = false;
status.status_lock.unlock();
break;
}
}
}
}
//TODO move syncronization to another function for extensibility
struct mthread_divinfo mthread::divide() {
struct mthread_divinfo ret;
ret.x_min = x_min;

View File

@ -64,9 +64,11 @@ class mthread {
int state;
struct mthread_divinfo divide();
void render(); //TODO
void render_area();
void run();
bool find_work();
void check_work_request();
};

269
mthread_old Normal file
View File

@ -0,0 +1,269 @@
#include "mthread.hpp"
#include <iostream>
#include <complex>
#include <unistd.h>
#include <thread>
#include <chrono>
#include <cmath>
#include <algorithm>
#include <atomic>
using namespace std;
mthread::mthread(
unsigned int x_mn, unsigned int x_mx, complex<double> c_min, complex<double> c_max,
unsigned int inf_cutoff, unsigned int max_iter, png& image, double *g_vmap, unsigned int *g_histogram,
mthread **worker_list, unsigned int id, unsigned int jobs, atomic<uint32_t>& progress)
: x_min_orig(x_mn), x_max_orig(x_mx),
c_min(c_min), c_max(c_max),
inf_cutoff(inf_cutoff), max_iter(max_iter), image(image), id(id), worker_cnt(jobs), progress(progress){
workers = worker_list;
x_min = x_mn;
x_max = x_mx;
y_min = 0;
y_max = image.height();
vmap = g_vmap;
histogram = g_histogram;
step = (c_max - c_min) / complex<double>(image.height(), image.width());
my_thread = NULL;
status.status_lock.lock();
status.searching = false;
status.share_finished = false;
status.div_syn = false;
status.div_error = false;
status.status_lock.unlock();
}
void mthread::dispatch() {
if((my_thread) && (my_thread->joinable())) delete my_thread;
my_thread = new thread([this] {render();});
}
mthread::~mthread() {
if((my_thread) && (my_thread->joinable())) {
my_thread->join();
delete my_thread;
}
}
void mthread::join() {
if((my_thread) && (my_thread->joinable())) my_thread->join();
}
//TODO make final
//looks for work
void mthread::find_work() {
}
//makes sure no one is asking for work from us
void mthread::check_work_request() {
unique_lock<mutex> ack;
unique_lock<mutex> syn_ack;
status.status_lock.lock();
status.row_load = y_max - on_y;
//check if anyone's asking us to divide
if(status.div_syn) {
status.div_error = status.row_load <= min_lines;
if(status.div_error) {
status.ack_lk.unlock();
status.msg_notify.notify_all();
}
else {
syn_ack = unique_lock<mutex>(status.syn_ack_lk);
status.ack_lk.unlock();
status.msg_notify.notify_all();
status.msg_notify.wait(syn_ack);
status.row_load = y_max - on_y;
syn_ack.unlock();
//new x/y min/max is ajusted by other thread, we can continue as normal.
}
}
status.status_lock.unlock();
}
//renders area
void mthread::render_area() { //TODO rename
}
//alternates states of finding work work and rendering
void mthread::run() {
for(;;) {
}
}
//TODO move syncronization to another function for extensibility
void mthread::render() {
uint32_t image_width = image.width();
unsigned int iter;
unsigned int worker, workers_finished;
uint32_t loads[worker_cnt];
double pixel_value;
complex<double> c, a;
struct mthread_status *peer_status;
struct mthread_divinfo divinfo;
unique_lock<mutex> ack;
unique_lock<mutex> syn_ack;
status.status_lock.lock();
status.searching = false;
status.share_finished = false;
status.div_syn = false;
status.div_error = false;
status.status_lock.unlock();
y_min = 0;
y_max = image.height();
for(;;) {
//thread is actively rendering
for(on_y = y_min; on_y < y_max; on_y++) {
progress++;
check_work_request();
/**
status.status_lock.lock();
status.row_load = y_max - on_y;
//check if anyone's asking us to divide
if(status.div_syn) {
status.div_error = status.row_load <= min_lines;
if(status.div_error) {
status.ack_lk.unlock();
status.msg_notify.notify_all();
}
else {
syn_ack = unique_lock<mutex>(status.syn_ack_lk);
status.ack_lk.unlock();
status.msg_notify.notify_all();
status.msg_notify.wait(syn_ack);
status.row_load = y_max - on_y;
syn_ack.unlock();
//new x/y min/max is ajusted by other thread, we can continue as normal.
}
}
status.status_lock.unlock();
**/
for(on_x = x_min; on_x < x_max; on_x++) {
c = (step * complex<double>(on_x,on_y)) + c_min;
a = 0;
for(iter = 0; iter < max_iter; iter++) {
if(abs(a) >= inf_cutoff) break;
a = a*a + c;
}
if(iter >= max_iter) {
iter = 0;
vmap[(on_y * image_width) + on_x] = 0;
}
else {
pixel_value = (iter + 1) - (log((log(pow(abs(a), 2.0)) / 2.0) / log(2.0)));
vmap[(on_y * image_width) + on_x] = pixel_value;
histogram[(int)pixel_value]++;
}
}
}
//thread is now searching for work
/** 2022 comment:
* this state should have been moved to a seperate function to allow rendering methods to differ
* from inherited mthreads without needing to reimpliment searching **/
status.status_lock.lock();
status.searching = true;
status.share_finished = true;
status.status_lock.unlock();
//first we look over all workers to see which are canidates to ask for work
while(status.searching) {
workers_finished = 0;
//TODO do we really need this whole for loop?
for(worker = 0; worker < worker_cnt; worker++) {
//lock other worker so we can request from them
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//if they're done, we remember that to see if we exit
if((peer_status->share_finished) && (worker != id)) {
workers_finished++;
}
//if they're us, currently looking for work,
//or don't have enough work for us to complete, then skip
if((worker == id) ||
(peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
//finally, if they're valid, write them down
loads[worker] = peer_status->row_load;
peer_status->status_lock.unlock();
}
//exit if all workers are finished
if(workers_finished >= worker_cnt - 1) {
return;
}
//then we look over and pick our canidates
for(;;) {
//find the worker who has the biggest workload
worker = distance(loads, max_element(loads, &loads[worker_cnt]));
if(!loads[worker]) break; //we have found a worker; distance is 0
peer_status = &workers[worker]->status;
peer_status->status_lock.lock();
//check to see if canidate is valid.
//TODO do we really need to check the first time?
if((peer_status->searching) || (peer_status->div_syn) || (peer_status->row_load < min_lines)) {
loads[worker] = 0;
peer_status->status_lock.unlock();
continue;
}
ack = unique_lock<mutex>(peer_status->ack_lk);
peer_status->div_syn = true;
peer_status->status_lock.unlock();
peer_status->msg_notify.wait(ack);
ack.unlock();
if(peer_status->div_error) {
loads[worker] = 0;
peer_status->status_lock.lock();
peer_status->div_error = false;
peer_status->div_syn = false;
peer_status->status_lock.unlock();
continue;
}
divinfo = workers[worker]->divide();
peer_status->syn_ack_lk.unlock();
peer_status->msg_notify.notify_all();
y_min = divinfo.y_min;
y_max = divinfo.y_max;
x_min = divinfo.x_min;
x_max = divinfo.x_max;
status.status_lock.lock();
status.searching = false;
status.status_lock.unlock();
break;
}
}
}
}
struct mthread_divinfo mthread::divide() {
struct mthread_divinfo ret;
ret.x_min = x_min;
ret.x_max = x_max;
ret.y_min = ((y_max - on_y) / 2) + on_y;
ret.y_max = y_max;
y_min = on_y;
y_max = ret.y_min;
status.div_syn = false;
return ret;
}