palloc smp safe (testing required, NOT pfree)

This commit is contained in:
Brett Weiland 2021-09-21 10:50:33 -05:00
parent 907fb823bf
commit cf7cd8be60
18 changed files with 663 additions and 56 deletions

View File

@ -1,6 +1,9 @@
target remote localhost:1234
symbol-file debug/debug_syms.o
set scheduler-locking step
hb page.c:357
define cs2bs
print (1 << (5 + $arg0))

View File

@ -2,10 +2,12 @@
#define _STRING_H_
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
void *strcpy(char *dest, char *src);
void *memcpy(void *dest, void *src, size_t n); //TODO
void *bzero(const void *dest, size_t size);
void *memcpy(void *dest, void *src, size_t n);
void *bzero(void *dest, size_t size);
bool *is_empty(void *dest, size_t size);
void *memset(void *s, char c, size_t n);
size_t strlen(const char *s);
int strcmp(const char *str1, const char *str2);

View File

@ -10,6 +10,7 @@
void unmap_lowmem();
size_t map_complete_physical();
void debug_pzone();
void init_pmap_smp();
struct phys_map *init_pmap(size_t pagetable_size);

View File

@ -1,5 +1,6 @@
#ifndef random_header
#define random_header
void randinit();
void sync_malloc();
unsigned int randint();
#endif

View File

@ -1,7 +1,10 @@
#ifndef SMP_INCLUDED
#define SMP_INCLUDED
#include <stdint.h>
void smp_boot();
#include <stdbool.h>
#include <cpuid.h>
#include <printf.h>
void smp_prepare();
extern uint8_t corecount;
static inline void lock(uint8_t *lock) {
@ -18,9 +21,25 @@ static inline void unlock(uint8_t *lock) {
asm("lock andb [%0], 0"::"r"(lock));
}
static inline void waitup(uint8_t *loto) {
static inline bool get_set_mutex(uint16_t *mutex) {
bool ret;
asm("lock bts %1, 0\n"
"jc .mutex_taken\n"
"mov %0, 0\n"
"jmp .done\n"
".mutex_taken:\n"
"mov %0, 1\n"
".done:\n"
:"=r"(ret)
:"m"(*mutex));
return ret;
}
//THIS IS ONLY UNTIL WE GET MULTITHREADING SET UP
uint8_t get_coreid();
#define CREATE_LOTO(name)
#endif

View File

@ -1,23 +0,0 @@
#ifndef SMP_SYNC_INCLUDED
#define SMP_SYNC_INCLUDED
static inline void lock(uint8_t *lock) {
asm("mov al, 1\n"
"spinlock:\n"
"lock xchgb [%0], al\n"
"test al, al\n"
"pause\n"
"jnz spinlock\n"
::"r"(lock):"al");
}
static inline void unlock(uint8_t *lock) {
asm("lock andb [%0], 0"::"r"(lock));
}
static inline void waitup(uint8_t *loto) {
}
#define CREATE_LOTO(name)
#endif

Binary file not shown.

View File

@ -26,10 +26,11 @@
typedef struct __attribute__((packed)) heap_chunk {
unsigned int free:1;
unsigned int size:4; //will use with flags later if needed
unsigned int lsize:4;
unsigned long reserved:55;
unsigned int free:1;
unsigned int mutex:1;
unsigned long reserved:54;
struct heap_chunk *fd;
struct heap_chunk *bk;
} chunk;
@ -203,6 +204,7 @@ void *malloc(size_t size) {
return (void *)on_chunk + sizeof(chunk);
}
void *realloc(void *old_chunk, size_t size) {
void *new_chunk = malloc(size);
memcpy(new_chunk, old_chunk, CHUNK_SIZE_FROM_INDEX(((chunk *)(old_chunk-24))->size));

View File

@ -18,15 +18,24 @@
#include <smp.h>
//testing headers
//#include <testmalloc.h>
#include <smp_racetest.h>
void kmain() {
printf("Kernal started on core %i\n", get_coreid());
sync_malloc();
PANIC(KERNEL_PANIC_KERNEL_RETURNED);
}
static bool smp_unlocked = false;
void smp_kinit() {
printf("Kernal started on core <<<<< \n");
asm(".wait_for_release:\n"
"mov al, [%0]\n"
"test al, al\n"
"jz .wait_for_release\n"
::"m"(smp_unlocked));
smp_load_idt();
kmain();
}
@ -39,7 +48,8 @@ void kernel_init() {
pmap_size = map_complete_physical();
init_klog();
init_pmap(pmap_size);
printf("\nKernal started on CPU 1!\n");
printf("\nKernal started on core 1!\n");
//test_malloc(100);
find_root_sdp();
@ -52,7 +62,12 @@ void kernel_init() {
clear_screen();
debug_pzone();
smp_boot();
smp_prepare();
//the rest of this needs to get done before the cores start executing
init_pmap_smp();
smp_unlocked = true;
fix_stack();
unmap_lowmem();
kmain();

View File

@ -1,5 +1,6 @@
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
// TODO clean up variable names
int strncmp(const char *s1, const char *s2, unsigned int n) {
int i;
@ -18,6 +19,13 @@ size_t strlen(const char *s) {
return(len);
}
bool is_empty(const char *s, size_t size) {
for(size_t i = 0; i < size; i++) {
if(s[i]) return false;
}
return true;
}
int strcmp(const char *s1, const char *s2) {
int i;
for(i = 0; ((s1[i] != '\0') && (s2[i] != '\0')); i++) {

View File

@ -7,11 +7,15 @@
#include <addr.h>
#include <stdbool.h>
#include <cpuid.h>
#include <smp.h>
#include <heap.h>
//just using char because c is a lil bitch and won't let us use void
extern char _kernel_shared_zone_begin;
//expects core_id
#define waitlist_i(y) (((core_id) * sizeof(uintptr_t)) + (y))
// PAGE MAPPING
#define PAGEMAP_LOCATION 0x10000
@ -22,12 +26,21 @@ extern char _kernel_shared_zone_begin;
typedef struct phys_map {
struct phys_map *next;
unsigned int max_buddy;
//has to be a 16 bit variable
uint16_t mutex; //we might improve the speed of this later
uint64_t bsize[MAX_BUDDY_ORDER];
uint64_t *buddy[MAX_BUDDY_ORDER];
} pmap_t;
static pmap_t *first_pmap;
//I'd like to find out a way to get rid of this... we only use it once
static unsigned int pmap_count = 0;
static pmap_t **waiting_pmaps;
#define MEM_AVAILABLE 1
#define MEM_RESERVED 2
#define MEM_APCI_RECLAIMABLE 3
@ -161,10 +174,10 @@ void debug_pmap() {
//TODO I know you don't want to, but you need to thoroughly check this.
void pfree(void *addr, size_t size) {
int blevel = 0;
uint64_t *onbyte; //the byte out buddy resides on in the current level
uint64_t page_bitloc; // how many bits we are away from buddy[0]. Helps calculate bitshifts
int bbitlen; //length of free'd area in current level
int lshift; //lshift is how many bits we shift over, rightbit is what it sounds like dumbass
uint64_t *onbyte;
uint64_t page_bitloc;
int bbitlen;
int lshift;
pmap_t *pmap = first_pmap;
/* note: there's no security check to see if the page is actually allocated,
@ -176,7 +189,7 @@ void pfree(void *addr, size_t size) {
if(((uintptr_t)addr & 4095) || (size & 4095)) {
PANIC(KERNEL_PANIC_INVALID_PFREE);
return; //TODO [minor] some more specificity, not a huge deal
return;
}
size /= 0x1000;
for(; pmap != 0; pmap = pmap->next) {
@ -221,7 +234,7 @@ void pfree(void *addr, size_t size) {
if(bbitlen <= 1) {
*onbyte |= ((uint64_t)1 << lshift);
break;
} else if(bbitlen & 1) { //check me
} else if(bbitlen & 1) {
size -= (1 << blevel);
*onbyte |= ((uint64_t)1 << (bbitlen + lshift));
}
@ -232,12 +245,16 @@ void pfree(void *addr, size_t size) {
void *palloc(size_t size) {
uint8_t core_id = get_coreid();
bool self_alloc;
int min_blevel, blevel;
uint64_t bbit, unshifted_entry, threshold, bloc; //TODO move when you've confirmed casting stuff
uint64_t bbit, unshifted_entry, threshold, bloc;
uint64_t buddy_i, *ret, *bentry;
int itercount;
bool unlocked_pmaps_searched = false;
pmap_t *pmap = first_pmap;
unsigned int waitingp_i = 0;
unsigned int searchingp_i;
if(size == 0) return 0;
@ -263,7 +280,19 @@ void *palloc(size_t size) {
}
for(blevel = min_blevel; blevel < MAX_BUDDY_ORDER; blevel++) {
for(pmap = first_pmap; pmap != 0; pmap = pmap->next) {
//for(pmap = first_pmap; pmap != 0; pmap = pmap->next) {
//while(!unlocked_pmaps_searched ||
// is_empty(waiting_pmaps[core_id], sizeof(&pmap) * pmap_count)) {
pmap = first_pmap;
while(pmap) {
if(get_set_mutex(&pmap->mutex)) {
if(!unlocked_pmaps_searched) waiting_pmaps[waitlist_i(waitingp_i++)] = pmap;
goto get_next_pmap;
}
if(unlocked_pmaps_searched) waiting_pmaps[waitlist_i(waitingp_i)] = 0;
for(buddy_i = 0; buddy_i < pmap->bsize[blevel]; buddy_i++) {
if(pmap->buddy[blevel][buddy_i] > (uint64_t)0) {
@ -295,11 +324,42 @@ void *palloc(size_t size) {
}
*bentry |= (unshifted_entry << bloc);
}
if(!self_alloc) bzero(ret, size * 0x1000);
pmap->mutex = 0;
if(!self_alloc) bzero(ret, size * 0x1000); //TODO do we really need to bezero here?
return ret;
}
}
get_next_pmap:
pmap->mutex = 0;
if(unlocked_pmaps_searched) {
pmap = 0;
for(searchingp_i = waitingp_i + 1; searchingp_i < pmap_count; searchingp_i++) {
if(waiting_pmaps[waitlist_i(searchingp_i)]) {
pmap = waiting_pmaps[waitlist_i(searchingp_i)];
break;
}
}
if(!pmap) {
for(searchingp_i = 0; searchingp_i <= waitingp_i; searchingp_i++) {
if(waiting_pmaps[waitlist_i(searchingp_i)]) {
pmap = waiting_pmaps[waitlist_i(searchingp_i)];
break;
}
}
}
}
else {
if(!pmap->next) {
pmap = waiting_pmaps ? waiting_pmaps[waitlist_i(0)] : 0;
unlocked_pmaps_searched = true;
}
else {
pmap = pmap->next;
}
}
}
unlocked_pmaps_searched = false;
waitingp_i = 0;
}
return 0;
}
@ -374,12 +434,19 @@ size_t map_complete_physical() {
}
}
pmap_t *init_pmap(size_t pagetable_size) {
void init_pmap_smp() {
size_t pmap_arrsize = corecount * pmap_count * sizeof(waiting_pmaps);
waiting_pmaps = malloc(pmap_arrsize);
bzero(waiting_pmaps, pmap_arrsize);
}
void *init_pmap(size_t pagetable_size) {
pmap_t *pmap, *last_pmap;
struct memory_table *zones = (void *)ZONE_MAP;
int budorder, zone_i;
uint64_t pmap_size, pmap_bbitsize, zone_size;
bool first_pmap_i = true;
@ -387,6 +454,7 @@ pmap_t *init_pmap(size_t pagetable_size) {
if((zones[zone_i].type == MEM_AVAILABLE) && (zones[zone_i].ACPI & 1) &&
zones[zone_i].length >= (0x2000)) {
printf("found allocatable map at %p\n", zones[zone_i].base);
pmap_count++;
last_pmap = pmap;
if(zones[zone_i].base == (void *)0x100000) {
zone_size = zones[zone_i].length - (((uint64_t)&_kernel_shared_zone_begin - 0x100000) + pagetable_size);
@ -396,7 +464,6 @@ pmap_t *init_pmap(size_t pagetable_size) {
zone_size = zones[zone_i].length;
pmap = PHYS_TO_VIRT(zones[zone_i].base);
}
if(first_pmap_i) {
pmap->next = NULL;
first_pmap_i = false;
@ -405,6 +472,8 @@ pmap_t *init_pmap(size_t pagetable_size) {
pmap->next = last_pmap;
}
pmap->mutex = 0;
for(budorder = 0; budorder < MAX_BUDDY_ORDER; budorder++) {
pmap_bbitsize = zone_size / (0x1000 << budorder);
pmap->bsize[budorder] = DIV_ROUND_UP(pmap_bbitsize , 64);
@ -440,8 +509,8 @@ pmap_t *init_pmap(size_t pagetable_size) {
}
pmap_size = (uint64_t)(pmap->buddy[pmap->max_buddy] + pmap->bsize[pmap->max_buddy]) - (uint64_t)pmap;
first_pmap = pmap; //we spoof palloc into allocating from the specific required pmap.
palloc(pmap_size); //TODO (MAJOR BUG) something isn't right, I don't think
first_pmap = pmap;
palloc(pmap_size);
}
}
return pmap;

View File

@ -7,10 +7,9 @@ static bool hw_random = false;
static unsigned long int seed = -1;
void randinit() {
unsigned int unused, eax, ecx;
eax = 0;
unsigned int unused, ecx;
ecx = 0;
__get_cpuid(1, &eax, &unused, &ecx, &unused);
__get_cpuid(1, &unused, &unused, &ecx, &unused);
hw_random = (ecx >> 30) & 1;
printf("Kernel random source: %s.\n", (hw_random) ? "rdrand" : "pseudo");
}
@ -31,6 +30,6 @@ unsigned int randint() {
seed = 1103515245 * seed + 12345;
return(unsigned int)(seed / 65536) % 32768;
}
return 0;
return random_long;
}

View File

@ -53,11 +53,30 @@ struct cpu_info {
static struct gdt_descriptor gdtr;
struct cores_info cores;
void smp_boot() {
struct apicid_to_coreid_deleteme { //WILL BE DELETED AFTER THREADING EXISTS TODO
uint8_t apic_id;
uint8_t core_id;
};
static struct apicid_to_coreid_deleteme *apicid_to_coreid;
uint8_t get_coreid() { //WILL BE DELETED AFTER THREADING EXISTS TODO
uint32_t ebx, unused_cpuid;
uint8_t apic_id;
__get_cpuid(1, &unused_cpuid, &ebx, &unused_cpuid, &unused_cpuid);
apic_id = ebx >> 24;
for(uint8_t core = 0; core < corecount; core++) {
if(apicid_to_coreid[core].apic_id == apic_id) return apicid_to_coreid[core].core_id;
}
return 0;
}
void smp_prepare() {
uint8_t cores_active = 1;
uint8_t stack_i = 0, core_i;
struct cores_info cores;
struct icr_reg icr;
struct cpu_info *stackarray;
get_coreinfo(&cores);
@ -72,11 +91,18 @@ void smp_boot() {
corecount = cores.corecount;
stackarray = malloc(sizeof(struct cpu_info) * (cores.corecount - 1));
apicid_to_coreid = malloc(sizeof(struct apicid_to_coreid_deleteme) * (cores.corecount - 1));
for(core_i = 0; core_i < cores.corecount; core_i++) {
//WILL BE DELETED AFTER THREADING EXISTS TODO
apicid_to_coreid[core_i].apic_id = cores.apic_id[core_i];
apicid_to_coreid[core_i].core_id = core_i;
if(cores.apic_id[core_i] == cores.bsp) continue;
stackarray[stack_i].apic_id = cores.apic_id[core_i];
stackarray[stack_i].stack = palloc(0x1000);
stackarray[stack_i].secondary_bsp = (stack_i)? false : true;
stack_i++;
}
for(stack_i = 0; stack_i < (cores.corecount - 1); stack_i++) {

View File

@ -4,9 +4,13 @@
#include <heap.h>
#include <libc.h>
#include <random.h>
#include <smp.h>
#include <paging.h>
//will delete later
static uint8_t lockeroni = 0;
void test_malloc(unsigned int cnt) {
void *testchunks[cnt];
unsigned int rindex[cnt], testchunk_size, i, x;
@ -15,7 +19,7 @@ void test_malloc(unsigned int cnt) {
for(x = 0; x < cnt; x++) {
testchunk_size = (CHUNK_SIZE_FROM_INDEX(randint() % 7) - 24);
testchunks[x] = malloc(testchunk_size);
//printf("ALLOCATING CHUNK %p SIZE %i\n", (void *)testchunks[x] - 24, testchunk_size);
printf("ALLOCATING CHUNK %p SIZE %i\n", (void *)testchunks[x] - 24, testchunk_size);
}
for(x = 0; x < cnt;) {
i = randint() % cnt;
@ -23,13 +27,26 @@ void test_malloc(unsigned int cnt) {
rindex[i] = x;
x++;
}
for(x = 0; x < cnt; x++) {
//printf("FREEING CHUNK %p\n", (void *)testchunks[rindex[x]]);
free(testchunks[rindex[x]]);
}
printf("\nmalloc tester:\n");
printf("THIS NEEDS TO BE EMPTY______________\n");
debug_heap();
printf("____________________________________\n");
unlock(&lockeroni);
}
uint8_t cores_waiting = 4;
void sync_malloc() {
void *mtest;
asm("lock decb [%0]\n"
"spinlock:\n"
"cmpb [%0], 0\n"
"jnz spinlock\n"
::"m"(cores_waiting));
mtest = palloc(0x1000);
printf("Make sure none of these match -> %lx\n", mtest);
}

View File

@ -185,6 +185,7 @@ pause
jnz .wait_for_gdt
lgdt [final_gdt_descriptor]
mov rax, smp_kinit
jmp rax

View File

@ -1,5 +1,4 @@
LD=../compiler/indigo_gcc/bin/x86_64-elf-ld
#CC=../compiler/indigo_gcc/bin/x86_64-elf-gcc
CC=../compiler/indigo_gcc/bin/x86_64-pc-linux-gnu-gcc
OBJCPY=../compiler/indigo_gcc/bin/x86_64-elf-objcopy
INC=-I./include
@ -60,6 +59,9 @@ smp_trampoline.o:
run:
qemu-system-x86_64 $(QEMU_OPTS) $(QEMU_PRINTDEBUG) -nographic
run_quiet:
qemu-system-x86_64 $(QEMU_OPTS) $(QEMU_PRINTDEBUG) -nographic 2>/dev/null
gdb: indigo_os
tmux new-session -s os_gdb "qemu-system-x86_64 -S -s $(QEMU_OPTS) -nographic"\;\
split-window -h "gdb -x debug/gdbinit.gdb; killall qemu-system-x86_64"

465
src/page_backup.c Normal file
View File

@ -0,0 +1,465 @@
#include <printf.h>
#include <stdint.h>
#include <libc.h>
#include <limits.h>
#include <panic.h>
#include <math.h>
#include <addr.h>
#include <stdbool.h>
#include <cpuid.h>
#include <smp.h>
//just using char because c is a lil bitch and won't let us use void
extern char _kernel_shared_zone_begin;
// PAGE MAPPING
#define PAGEMAP_LOCATION 0x10000
#define MAX_BUDDY_ORDER 8
#define PALLOC_AUTO_BLEVEL MAX_BUDDY_ORDER
typedef struct phys_map {
struct phys_map *next;
unsigned int max_buddy;
bool mutex; //we might improve the speed of this later
uint64_t bsize[MAX_BUDDY_ORDER];
uint64_t *buddy[MAX_BUDDY_ORDER];
} pmap_t;
static pmap_t *first_pmap;
#define MEM_AVAILABLE 1
#define MEM_RESERVED 2
#define MEM_APCI_RECLAIMABLE 3
#define MEM_APCI_NVS 4
#define MEM_BAD 5
// ZONES
#define ZONE_MAP_PLOC 0x7000
#define ZONE_MAP PHYS_TO_VIRT(ZONE_MAP_PLOC)
//reorganized (moved) from header
typedef struct __attribute__((packed)) {
unsigned int present : 1; // present, must be one when accessed.
unsigned int read_write : 1; // if set to one, read and write is set
unsigned int user : 1; // For seperating CPL 0-2 and 3+
unsigned int writethrough_cache : 1; // honestly maybe I should look into caching
unsigned int cachable : 1; // hardware chaching. 0 is enabled, whats the worst that could happen?
unsigned int accessed : 1; // we'll never use any of these!
unsigned int zg0 : 1; // needs to be (and will be) zero'd
unsigned int size : 1; // if set to 1, this entry points to physical memory
unsigned int zg1 : 1; // needs to be (and will be) zero'd
unsigned int software_marks : 3; // available for our own use, I doubt we'll use it in such a simple thing
uintptr_t base_ptr : 40;
unsigned int avail:11;
unsigned int no_exec:1;
} page_table;
struct memory_table {
void *base;
uint64_t length;
uint32_t type;
uint32_t ACPI;
} __attribute__((packed));
static bool NX_capable;
static bool huge_page_capable;
void get_mem_capabilities() {
uint32_t unused, edx;
__get_cpuid(0x80000001, &unused, &unused, &unused, &edx);
huge_page_capable = (edx >> 26) & 1;
NX_capable = (edx >> 20) & 1;
}
void fix_stack() {
struct stack_frame *frame;
asm("addq rsp, %0\n"
"addq rbp, %0\n"
"mov %0, rbp"
:"=r"(frame)
:"r"(PA_OFFSET));
while(frame->next != 0) {
printf("%p\n", frame->function_base);
frame->next = PHYS_TO_VIRT((void *)frame->next);
frame = frame->next;
}
}
void unmap_lowmem() {
//[future]
//eventually, you should use the function that unmaps pages when you write it
page_table *entry = (page_table *)PAGEMAP_LOCATION;
entry[0].present = 0;
}
void debug_pzone() {
struct memory_table *memtable = (void *)ZONE_MAP;
printf(" __________________________________________________________________________\n");
printf("| type\tstart\t\t\tend\t\t\tsize\t\t |\n");
printf("|--------------------------------------------------------------------------|\n");
for(unsigned int i = 0; memtable[i].length > 0; i++) {
printf("| %u %u\t0x%p\t0x%p\t0x%p |\n", memtable[i].type, memtable[i].ACPI, memtable[i].base, (memtable[i].base + memtable[i].length), memtable[i].length);
}
printf("----------------------------------------------------------------------------\n");
}
void ram_stresser() {
struct memory_table *memtable = (void *)ZONE_MAP - PA_OFFSET;
memtable[6].length = 0x10000;
}
void debug_pmap() {
pmap_t *pmap = first_pmap;
int pmap_i = 0, order;
uint64_t blong_i, bbit_i, buddy_chunksize, omit_cnt;
printf("Maximum buddy order: %u (up to %#x sized chunks)\n", MAX_BUDDY_ORDER, ((0x1000 << MAX_BUDDY_ORDER) - 1));
for(; pmap != 0; pmap = pmap->next) {
printf("Table %u:\n"
"\tPhysical/pmap start:\t%#p\n"
"\tTable Size:\t%u\n", pmap_i, pmap,
(uint64_t)(pmap->buddy[MAX_BUDDY_ORDER - 1] + pmap->bsize[MAX_BUDDY_ORDER - 1]) - (uint64_t)pmap);
for(order = 0; order <= MAX_BUDDY_ORDER - 1; order++) {
buddy_chunksize = (0x1000 << order); //TODO just put it in the for loop
printf("\tbuddy[%u]:\n"
"\t\tAddress:\t%#p\n"
"\t\tSize:\t\t%u\n"
"\t\tBuddies:\t\t\n", order, pmap->buddy[order], pmap->bsize[order]);
omit_cnt = 0;
for(blong_i = 0; blong_i < pmap->bsize[order]; blong_i++) {
for(bbit_i = 0; bbit_i < 64; bbit_i++) {
if((pmap->buddy[order][blong_i]) & ((uint64_t)1 << bbit_i)) {
if((omit_cnt < 20) || (blong_i == pmap->bsize[order] - 1)) {
printf("address %#p\tbit %u: %p\t is free\n",
pmap->buddy[order] + blong_i,
bbit_i,
((uint64_t)pmap - PA_OFFSET) + ((((blong_i * 64) + bbit_i) * buddy_chunksize)));
}
omit_cnt++;
if(omit_cnt == 20) {
printf("\t\t\t[more entries ommited]\n");
}
}
}
}
}
pmap_i++;
}
}
//TODO I know you don't want to, but you need to thoroughly check this.
void pfree(void *addr, size_t size) {
int blevel = 0;
uint64_t *onbyte; //the byte out buddy resides on in the current level
uint64_t page_bitloc; // how many bits we are away from buddy[0]. Helps calculate bitshifts
int bbitlen; //length of free'd area in current level
int lshift; //lshift is how many bits we shift over, rightbit is what it sounds like dumbass
pmap_t *pmap = first_pmap;
/* note: there's no security check to see if the page is actually allocated,
* or if we are freeing the table itself.
* This should be okay, as only the kernel will be calling it.
* If it gets too messy we can always come back.
*/
if(((uintptr_t)addr & 4095) || (size & 4095)) {
PANIC(KERNEL_PANIC_INVALID_PFREE);
return; //TODO [minor] some more specificity, not a huge deal
}
size /= 0x1000;
for(; pmap != 0; pmap = pmap->next) {
page_bitloc = (addr - (void *)pmap) / 0x1000;
onbyte = pmap->buddy[0] + (page_bitloc / 64);
if((addr >= (void *)pmap) && onbyte < pmap->buddy[1]) break;
}
while(blevel < MAX_BUDDY_ORDER) {
lshift = (page_bitloc / (1 << blevel)) & 63;
onbyte = pmap->buddy[blevel] + ((page_bitloc / 64) / (1 << blevel));
bbitlen = size / (1 << blevel);
//TODO clean up this part ------------------------------------------------------------- (below)
if(bbitlen <= 1) {
if(lshift & 1) {
if((*onbyte >> (lshift - 1)) & 1) {
*onbyte &= ~(((uint64_t)1 << (lshift - 1)) | ((uint64_t)1 << lshift));
size += (1 << blevel);
page_bitloc -= (1 << blevel);
bbitlen = size / (1 << blevel);
}
}
else if((*onbyte >> (lshift + 1)) & 1) {
*onbyte &= ~(((uint64_t)1 << (lshift + 1)) | ((uint64_t)1 << lshift));
size += (1 << blevel);
bbitlen = size / (1 << blevel);
}
}
else if(((lshift + bbitlen) & 1) && ((*onbyte >> (lshift + bbitlen)) & 1)) {
*onbyte ^= ((uint64_t)1 << (lshift + bbitlen));
size += (1 << blevel);
bbitlen = size / (1 << blevel);
}
//TODO clean up this part ------------------------------------------------------------- (above)
if((!((size - 1) & size)) && (bbitlen != 1)) {
blevel = 63 - __builtin_clzl(size);
}
else {
if(bbitlen <= 1) {
*onbyte |= ((uint64_t)1 << lshift);
break;
} else if(bbitlen & 1) { //check me
size -= (1 << blevel);
*onbyte |= ((uint64_t)1 << (bbitlen + lshift));
}
blevel++;
}
}
}
void *palloc(size_t size) {
bool self_alloc;
int min_blevel, blevel;
uint64_t bbit, unshifted_entry, threshold, bloc; //TODO move when you've confirmed casting stuff
uint64_t buddy_i, *ret, *bentry;
int itercount;
pmap_t *pmap = first_pmap;
if(size == 0) return 0;
if(size & 4095) {
size = DIV_ROUND_UP(size, 0x1000);
}
else {
size = size / 0x1000;
}
//checking if pmap has been initilized; if not we've been called to self allocate
//the first buddy should never be allocated; that's where our pmap lives
if(pmap->buddy[pmap->max_buddy][0] & 1) {
self_alloc = true;
min_blevel = pmap->max_buddy;
}
else {
//log(size, 2)
self_alloc = false;
min_blevel = 63 - __builtin_clzl(size);
if(size & (size - 1)) min_blevel++;
if(min_blevel > MAX_BUDDY_ORDER - 1) return 0;
}
for(blevel = min_blevel; blevel < MAX_BUDDY_ORDER; blevel++) {
for(pmap = first_pmap; pmap != 0; pmap = pmap->next) {
//pmap->mutex = true;
/**
if(!maps_transversed && get_set_mutex(&pmap->mutex)) {
//change get_coreid once we multithread
asm("mov al, 1\n"
"mov cl, %0\n"
"shl al, cl\n"
"lock or [%1], al\n"
::"r"(get_coreid()), "m"(pmap->threads_searched)
:);
}
**/
for(buddy_i = 0; buddy_i < pmap->bsize[blevel]; buddy_i++) {
if(pmap->buddy[blevel][buddy_i] > (uint64_t)0) { //found buddy
bentry = &pmap->buddy[blevel][buddy_i];
bbit = __builtin_ctzl(*bentry);
bloc = bbit;
*bentry ^= (uint64_t)1 << bbit;
ret = (((buddy_i * 64) + bbit) * (0x1000 << blevel)) + (void *)pmap;
threshold = 0b11;
itercount = 1;
for(blevel--; blevel >= 0; blevel--) {
bentry = pmap->buddy[blevel] + ((bentry - pmap->buddy[blevel + 1]) * 2);
itercount++;
if(bloc >= 32) bentry += 1;
bloc = (bloc * 2) & 63; // will be the amount we need to shift
bbit = ceil((float)size / (1 << blevel));
unshifted_entry = ((uint64_t)1 << bbit) & threshold;
if(unshifted_entry) {
threshold = ((uint64_t)1 << (bbit * 2)) - 1;
}
else {
threshold = (threshold << 2) | threshold;
}
*bentry |= (unshifted_entry << bloc);
}
if(!self_alloc) bzero(ret, size * 0x1000); //TODO do we really need to bezero here?
return ret;
}
}
}
}
return 0;
}
//returns size of pages needed
size_t map_complete_physical() {
uint64_t total_mem;
unsigned int pdpe_cnt, pde_cnt, pde_max_i;
int zone_i, entry_i;
struct memory_table *zones = (void *)ZONE_MAP_PLOC;
page_table *pml4 = (page_table *)PAGEMAP_LOCATION;
page_table *pdpe = (page_table *)&_kernel_shared_zone_begin;
page_table *pde;
for(zone_i = 0; zones[zone_i].length > 0; zone_i++);
total_mem = (uint64_t)zones[zone_i - 1].base + zones[zone_i - 1].length;
pdpe_cnt = (total_mem + (0x40000000 - 1)) / 0x40000000;
entry_i = (PA_OFFSET >> 39) & 0x1ff;
pml4[entry_i].base_ptr = (uintptr_t)&_kernel_shared_zone_begin >> 12;
pml4[entry_i].read_write = 1;
pml4[entry_i].user = 0;
pml4[entry_i].size = 0;
pml4[entry_i].no_exec = 1;
pml4[entry_i].present = 1;
if(huge_page_capable) {
for(int pdpe_i = 0; pdpe_i < pdpe_cnt; pdpe_i++) {
pdpe[pdpe_i].base_ptr = pdpe_i << 18;
pdpe[pdpe_i].read_write = 1;
pdpe[pdpe_i].user = 0;
pdpe[pdpe_i].size = 1;
pdpe[pdpe_i].no_exec = NX_capable;
pdpe[pdpe_i].present = 1;
}
return pdpe_cnt * 0x1000;
}
else {
pde_cnt = (total_mem + 0x100000) / 0x200000;
for(int pdpe_i = 0; pdpe_i < pdpe_cnt; pdpe_i++) {
pde = (page_table *)(&_kernel_shared_zone_begin + (pdpe_cnt * 0x1000) + (pdpe_i * 0x1000));
if((pdpe_i < pdpe_cnt - 1) || (!(pde_cnt & 511))) {
pde_max_i = 512;
}
else {
pde_max_i = pde_cnt & 511;
}
pdpe[pdpe_i].base_ptr = (uintptr_t)pde >> 12;
pdpe[pdpe_i].read_write = 1;
pdpe[pdpe_i].user = 0;
pdpe[pdpe_i].size = 0;
pdpe[pdpe_i].no_exec = NX_capable;
pdpe[pdpe_i].present = 1;
for(int pde_i = 0; pde_i < pde_max_i; pde_i++) {
pde[pde_i].base_ptr = ((pdpe_i << 9) + pde_i) << 9;
pde[pde_i].read_write = 1;
pde[pde_i].user = 0;
pde[pde_i].size = 1;
pde[pde_i].no_exec = NX_capable;
pde[pde_i].present = 1;
}
}
return (pdpe_cnt * 2) * 0x1000;
}
}
pmap_t *init_pmap(size_t pagetable_size) {
pmap_t *pmap, *last_pmap;
struct memory_table *zones = (void *)ZONE_MAP;
int budorder, zone_i;
uint64_t pmap_size, pmap_bbitsize, zone_size;
bool first_pmap_i = true;
for(zone_i = 0; zones[zone_i].length > 0; zone_i++) {
if((zones[zone_i].type == MEM_AVAILABLE) && (zones[zone_i].ACPI & 1) &&
zones[zone_i].length >= (0x2000)) {
printf("found allocatable map at %p\n", zones[zone_i].base);
last_pmap = pmap;
if(zones[zone_i].base == (void *)0x100000) {
zone_size = zones[zone_i].length - (((uint64_t)&_kernel_shared_zone_begin - 0x100000) + pagetable_size);
pmap = PHYS_TO_VIRT((void *)&_kernel_shared_zone_begin + pagetable_size);
}
else {
zone_size = zones[zone_i].length;
pmap = PHYS_TO_VIRT(zones[zone_i].base);
}
if(first_pmap_i) {
pmap->next = NULL;
first_pmap_i = false;
}
else {
pmap->next = last_pmap;
}
pmap->mutex = false;
for(budorder = 0; budorder < MAX_BUDDY_ORDER; budorder++) {
pmap_bbitsize = zone_size / (0x1000 << budorder);
pmap->bsize[budorder] = DIV_ROUND_UP(pmap_bbitsize , 64);
if(budorder) {
pmap->buddy[budorder] = pmap->buddy[budorder - 1] + pmap->bsize[budorder - 1];
}
else {
pmap->buddy[0] = (void *)pmap + sizeof(*pmap);
}
if(budorder < MAX_BUDDY_ORDER - 1) {
bzero(pmap->buddy[budorder], pmap->bsize[budorder] * 8);
if(pmap_bbitsize & 1) {
pmap->buddy[budorder][pmap->bsize[budorder] - 1] =
((uint64_t)1 << ((pmap_bbitsize - 1) & 63));
}
if(pmap_bbitsize == 1) {
pmap->max_buddy = budorder;
for(budorder++; budorder < MAX_BUDDY_ORDER; budorder++) {
pmap->buddy[budorder] = 0;
pmap->bsize[budorder] = 0;
}
break;
}
}
else {
pmap->max_buddy = MAX_BUDDY_ORDER - 1;
memset(pmap->buddy[budorder], UINT8_MAX, pmap->bsize[budorder] * 8);
if((pmap_bbitsize / 64) != (pmap->bsize[budorder])) {
pmap->buddy[budorder][pmap->bsize[budorder] - 1] =
(((uint64_t)1 << (pmap_bbitsize & 63)) - 1);
}
}
}
pmap_size = (uint64_t)(pmap->buddy[pmap->max_buddy] + pmap->bsize[pmap->max_buddy]) - (uint64_t)pmap;
first_pmap = pmap; //we spoof palloc into allocating from the specific required pmap.
palloc(pmap_size);
}
}
return pmap;
}