Analyzing Performance of Booth’s Algorithm and
Modified Booth’s Algorithm

Brett Weiland

April 12, 2024

Abstract

In this paper, the performance of Booth’s Algorithm is compared to modified
Booth’s Algorithm. Each multiplier is simulated in Python, and performance is ob-
served by counting the number of add and subtract operations for inputs of various
lengths. Results are analyzed and discussed to highlight the potential tradeoffs one
should consider when deciding what multiplier is to be used.

Introduction

Multiplication is among the most time consuming mathematical operations for pro-
cessors. In many applications, the time it takes to multiply dramatically influences the
speed of the program. Applications of digital signal processing (such as audio mod-
ification and image processing) require constant multiply and accumulate operations
for functions such as fast fourier transformations and convolutions. Other applications
are heavily dependent on multiplying large matrices, such as machine learning, 3D
graphics and data analysis. In such scenarios, the speed of multiplication is vital. Con-
sequently, most modern processors implement hardware multiplication. However, not
all hardware multiplication schemes are equal; there is often a stark contrast between
performance and hardware complexity. To further complicate things, multiplication
circuits perform differently depending on what numbers are being multiplied.

Algorithm Description

Booth’s algorithim computes the product of two signed numbers in two’s compliment
format. To avoid overflow, the result is placed into a register two times the size of the
operands (or two registers the size of a single operand). Additionally, the algorithim
must work with a space that is exended one bit more then the result. For the purpose
of brevity, the result register and extra bit will be refered to as the workspace, as the
algorithim uses this space for its computations. First, the multiplier is placed into the
workspace and shifted left by 1. From there, the multiplier is used to either add or
subtract from the upper half of the workspace. The specific action is dependent on the
last two bits of the workspace.

Bit1l Bit0 Action

__ o

[Y SN

None
Add

Subtract
None

After all iterations are complete, the result is arithmaticlly shifted once to the left,
and the process repeats for the number of bits in an operand. The pseudo code for this

algorithim is below:

Booth:
result = multiplier << 1
loop (operand length) times:
if last two bits are O1:

result(upper half) += multiplicand

if last two bits are 10:

result(upper half) += twos_comp(multiplicand)

remove extra bits from result
arithmatic shift result right

result >> 1

Modified booth’s algorithim functions similar to Booth’s algorithim, but checks the
last three bits instead. As such, there are a larger selection of actions for each iteration:

Bit2 Bitl Bit0 Action

0

el el e e e e N a)
I, R, OO R R, O

0

O, ORFR OR

None
Add
Add
Add x2
Sub x2
Sub
Sub
None

Because some operations require doubling the multiplicand, an extra bit is added
to the most significant side of the workspace to avoid overflow. After each iteration,
the result is arithmaticlly shifted right twice. The number of iterations is only half of
the length of the operands. After all iterations, the workspace is shifted right once, and
the second most significant bit is set to the first most significant bit as the result register
does not include the extra bit. Pseudo code for this algorithim is listed below:

Modified booth:

multiplicand(MSB) = multiplicand(second MSB)

result = multiplier << 1

loop (operand length / 2) times:

if last two bits are 001 or 010:
result(upper half) += multiplicand
if last two bits are 011:
result (upper half) += multiplicand * 2
if last two bits are 100:
result(upper half) += twos_comp(multiplicand) * 2
if last two bits are 101 or 110:
result (upper half) += twos_comp(multiplicand)
remove extra bits from result
arithmatic shift result right twice
result >> 1
result(second MSB) = result(MSB)
result(MSB) = 0

Simulation Implimentation

Both algorithims were simulated in Python in attempts to utalize its high level nature
for rapid development. The table for Booth’s algorithim was preformed with a sim-
ple if-then loop, while a switch case was used in modified booth’s algorithim. Simple
integers were used to represent registers.

One objective of this paper is to analyze and compare the peformance of these two
algorithms for various operand lengths. As such, the length of operands had to be
constantly accounted for. Aritmatic bitwise operations, including finding two’s com-
pliment, were all implimented using functions that took length as an input. Further
more, extra bits were cleared after each iteration.

To track down issues and test the validity of the multipliers, a debug function was
written. To allow Python to natively work with the operands, each value is calculated
from its two’s compliment format. The converted numbers are then multiplied, and the
result is compared to both Booth’s Algorithim and Modified Booth’s Algorithim. To
ensure that the debugging function itself doesn’t malfunction, all converted operands
and expected results are put into a single large table for checking. The exported version
of this table can be seen on the last page, in table 3.

Analysis

Modified Booth’s algorithim only requires half the iterations as Booth's algorithim. As
such, it can be expected that the benifit of modified Booth’s algorithim increases two
fold with bit length. This can be shown by comparing the two curves in figure 1.

129 —&- booths algorithim . ,A
=¥ - modified booths algorithim
7
10 A~
0 rd
= PR
=8 X
o PR
) -
'183 6 T /,A - /v
7’ -
j=] s _
Z // < - - ,’
4 T K - fv -
_-Y -
24 v~
T T T T T
4 6 8 10 12
Operand Length

Figure 1: Add and Subtract operations of various Operand Lengths

Despite this, the nature of both algorithims dictate that modified booth’s algorithim
is not explicitly faster. Iteration count translates to the maxiumum number of additions
and subtractions. Figure 2 shows the performance of the two algorithims given differ-
ent input lengths, while table x shows the actual data made to generate the plot. There
are some interesting things to note. When operands contain repeating zeros or ones,
both operations preform similarly, as only shifting is required. Operands containing
entirely ones or zeros result in idential preformance. On the contrary, alternating bits
within operands demonstrate where the two algorithims differ, as almost no bits can
be skipped over. Operands made entirely of alternating bits result in the maximum
performance diffrence, in which modified booth’s algorithim is potentially two times

faster.

@ 129 —&- booths algorithim A

= —~¥- modified booths algorithim / 4

Q | A /

=10 s

) 71 /

3 A R

g 87 A A

= ‘) Y% Iy

’ A A ¢

g 67 A | 1

= / A // * -7

% // * ””’ /’,

S -

:] H

483 2 | X

04 &7 X

T T T T T
4 6 8 10 12

Length of Operands

Figure 2: Add and Subtract operations of various Operand Lengths

All of this needs to be considered when designing an ALU. Modified booth’s al-
gorithim may improve speed, but requires substantially more hardware to impliment.
One must consider if die space is to be allocated to optimize multiplication. In many
applications, fast multiplication is unnessesary; many early single-chip processors and
microcontrollers didn’t impliment multiplication, as they were intended for simple em-
beded applications.

Conclusion

Hardware multipliers can help accellerate applications in which multiplication is fre-
quent. When implimenting hardware multipliers, it’s important to consider the advan-
tages and disadvantages of various multiplier schemes. Modified Booth’s algorithim
gives diminishing returns for smaller operands and requires significantly more logic.
In applications that depend heavily on fast multiplication of large numbers, modified
booth’s algorithim is optimal.

Appendix
multiplicand multiplier length booth modified booth
0b1110 Ob1111 4 1 1
0b101 0b0 4 0 0
Ob111111 Ob111111 6 1 1
0b101110 0b110111 6 3 3
0b111011 0b100011 6 3 3
Ob11111 0b1010101 8 8 4
0b11010111 0b1010101 8 8 4
0b1010101 0b11010111 8 5 4
0b1110111 0b110011 8 4 4
0b0 0b1110111 8 4 4
0b101010101 0b101010101 10 10 5
0b1100111011 0b1001110000 10 3 3
0b1001101110 0b101111010 10 6 4
0b10101010101 0b10101010101 12 12 6
0b1111100111 0bO 12 0 0
0b101010101010 0b101010101010 12 11 6
0b111001110000 0b11111111 12 2 2

Table 1: Number of additions and subtractions for various inputs

multiplicand multiplier result (bin) result (hex)
0b1110 Ob1111 0b10 0x2
0b101 0b0 0b0 0x0
Ob111111 Ob111111 Obl 0x1
0b101110 Ob110111 0b10100010 Oxa2
0Ob111011 0b100011 0b10010001 0x91
Ob11111 0b1010101 0b101001001011 Oxa4b
0b11010111 0b1010101 O0b1111001001100011 0xf263
0b1010101 0b11010111 Ob1111001001100011 0xf263
Ob1110111 0b110011 0b1011110110101 0x17b5
0b0 Ob1110111 0b0 0x0
0b101010101 0b101010101 O0b11100011000111001 0x1c639
0b1100111011 0b1001110000 0b10011001111010000 0x133d0
0b1001101110 0b101111010 0b11011010111001101100 Oxdae6c
0b10101010101 0b10101010101 0b111000110111000111001 Ox1c6e39
Ob1111100111 0b0 0b0 0x0
0b101010101010 0b101010101010 0b111000111100011100100 0x1c78e4

O0b111001110000 0b11111111

0b111111100111000110010000 0xfe7190

Table 2: Results of multiplication according to simulated multipliers

Code listing

1 #!/usr/bin/env python3

> from tabulate import tabulate

3 import matplotlib

4+ import matplotlib.pyplot as plt

¢ # finds the two’s compliment of a given number
7 def twos_comp (num, length):

8 if num == O0:

9 return O

10 return abs((num ~ ((1 << length) - 1)) + 1)

12 # arithmaticlly shifts right; divides by 2

13 def arithmatic_shiftr (num, length, times):

14 for t in range(times):

15 num = (num >> 1) | ((1 << length - 1) & num)
16 return num

18 # arithmaticlly shifts left; multiplies by 2
19 def arithmatic_shiftl(num, length):
20 if num & (1 << length - 1):

21 return (num << 1) | (1 << length - 1)
2 else:
23 return (num << 1) & “(1 << length - 1)

5 # only used for debugging function to allow python to natively use two’
s compliment numbers

2% def twoscomp_to_int(num, length):

27 if num & (1 << length - 1):

28 return (-1 * twos_comp(num, length))

29 return num & (1 << length) - 1

31 def debug(results):

32 headers = [’multiplicand bin’, ’multiplier bin’, ’multiplicand dec’,
’multiplier dec’, ’expected bin’, ’expected dec’, ’booth’, ’mod
booth’]

33 table = []
34 for [multiplicand_bin, multiplier_bin, result_booth, result_booth_mod
, length] in results:

35 multiplicand = twoscomp_to_int(multiplicand_bin, length)

36 multiplier = twoscomp_to_int(multiplier_bin, length)

37 expected = multiplicand * multiplier

38 expected_bin = (twos_comp (expected, length * 2), expected) [
expected > 0]

39 success_b = [bin(result_booth), "PASS"] [result_booth ==
expected_bin]

40 success_bm = [bin(result_booth_mod), "PASS"] [result_booth_mod ==

expected_bin]

2 table.append ([bin(multiplicand_bin), bin(multiplier_bin),
multiplicand, multiplier, bin(expected_bin), expected, success_b,
success_bm])

83 with open("report/debug_table.tex", "w") as f:

44 f.write(tabulate(table, headers, tablefmt="latex_longtable"))

45 print ("\nCHECKS: \n", tabulate(table, headers), "\n")

19 def booth(multiplier, multiplicand, length):

50 operations = 0

51 multiplicand_twos_comp = twos_comp(multiplicand, length)

52 result = multiplier << 1 # extended bit

53 for i in range(length): # iteration count is size of one operand
54 op = result & Obl1l

55 if op == 0bO1:

56 operations += 1 # add upper half by multiplicand

57 result += multiplicand << (length + 1)

58 if op == 0b10:

59 operations += 1 # subtract upper half by multiplicand
60 result += multiplicand_twos_comp << (length + 1)
61 result &= (1 << (length * 2) + 1) - 1 # get rid of any overflows

62 result = arithmatic_shiftr (result, (length * 2) + 1, 1)
63 result = result >> 1
64 return (result, operations)

o6 def booth_mod(multiplier, multiplicand, length):

67 operations = 0

68 # extend workspace by *two* bits, MSB to prevent overflow when mult/
sub by 2

69 multiplicand |= ((1 << length - 1) & multiplicand) << 1

70 multiplicand_twos_comp = twos_comp(multiplicand, length + 1)

71 result = multiplier << 1

72 for i in range(int ((length) / 2)): # number of iterations is half the
73 op = result & Obil11l

74 match op: # take action dependent on last two bits

75 case 0b010 | Ob0OO1l: # add upper half by multiplicand

76 print ("add")

77 result += multiplicand << (length + 1)

78 case 0bO11: # add upper half by 2x multiplicand

79 print("add *x 2")

80 result += arithmatic_shiftl(multiplicand, length + 1) << (
length + 1)

81 case 0b100: # subtract upper half by 2x multiplicand

8 print ("sub * 2")

83 result += arithmatic_shiftl(multiplicand_twos_comp, length + 1)
<< (length + 1)

84 case 0b101 | Ob110: # subtract upper half my multiplicand

85 print ("sub ")

86 result += multiplicand_twos_comp << (length + 1)

87 if op != 0bl1l1l and op != O:

88 operations += 1

89 result &= (1 << ((length * 2) + 2)) - 1 # get rid of any overflows

90 result = arithmatic_shiftr(result, (length * 2) + 2, 2)

91 # shifts the workspace right by one, while duplicating extra sign bit
to second MSB, and clearing the MSB.

92 # this ensures the result length is 2x the operands.

oo result = ((result | ((1 << ((length * 2) + 2)) >> 1)) & ((1 << ((
length * 2) + 1)) - 1)) >> 1

94 return (result, operations)

95

9% if __name__ == "__main__":

97 # set up headers for tables

98 result_headers = [’multiplicand’, ’multiplier’, ’result (bin)’,
result (hex)’]

99 result_table = []

100
101

140

opcount_headers = [’multiplicand’, ’multiplier’, ’length’, ’booth’,

modified booth’]
opcount_table = []

lengths = []
ops_booth = []
ops_mod_booth = []

debug_results = []

Reads operands from file.

Each line needs to contain two operands in binary two’s compliment

form seperated by a space.

Leading zeros should be appended to convey the length of operands.

Operands must have the same size.
with open(’input.txt’) as f:
input_string = f.read().split(’\n’)

for operation in input_string:
if operation == ’’ or operation[0] == ’#’:
continue
length = len(operation.split(" ") [0])
multiplicand = int(operation.split(" ")[0], 2)
multiplier = int(operation.split(" ")[1], 2)

get result and operation count of both algorithims
result_booth = booth(multiplier, multiplicand, length)
result_mod_booth = booth_mod(multiplier, multiplicand, length)

gather data for matplotlib
ops_booth.append(result_booth[1])
ops_mod_booth.append (result_mod_booth[1])
lengths .append (length)

gather data for report results table
result_table.append([bin(multiplicand), bin(multiplier), bin(
result_booth[0]), hex(result_booth[0])])

gather data for test function to check if simulator is working
debug_results.append([multiplicand, multiplier, result_booth[0],

result_mod_booth[0], length])

gather data for operation count table

opcount_table.append ([bin(multiplicand), bin(multiplier), length,

result_booth[1], result_mod_booth[1]])

tests validity of results
debug (debug_results)

generate tables for report
print (tabulate (result_table, result_headers, tablefmt="latex"))
print (tabulate (opcount_table, opcount_headers))

output

with open("report/result_table.tex", ’w’) as f:
f.write(tabulate(result_table, result_headers, tablefmt="
latex_booktabs"))

)

with open("report/speed_table.tex",

f.write(tabulate (opcount_table,

latex_booktabs"))

set up plotting
matplotlib.use ("pgf")
matplotlib.rcParams.update ({

"pgf.texsystem": "pdflatex",

>font.family’: ’serif’,

’text.usetex’: True,

’pgf . rcfonts’: False,
1))

opcount_headers,

"w") as f:

generate table for operations vs operand length
plt.gcf () .set_size_inches(w=4.5, h=3.5)

plt.plot(lengths, ops_booth, ’°

plt.plot(lengths, ops_mod_booth,

algorithim’)

__mJ ,
JV__C7 s

plt.gca() .set_xlabel ("Length of Operands")
plt.gca() .set_ylabel ("Number of Additions and Subtractions")

plt.legend (loc=’upper left’)

plt.savefig(’report/performance.pgf’)

generate table of iterations vs operand length

iters_booth = []

iters_mod_booth = []

for length in lengths:
iters_booth.append(length)

iters_mod_booth.append(int (length / 2))

plt.figure ()

plt.gcf () .set_size_inches(w=4.5,

h=3.5)

plt.plot(lengths, lengths, ’"--m’,
plt.plot(lengths, [int(1/2) for 1 in lengths], ’v--c’,

modified booths algorithim?’)

tablefmt="

label=’booths algorithim’)
label="modified booths

label=’booths algorithim’)

plt.gca() .set_xlabel ("Operand Length")
plt.gca() .set_ylabel ("Number of iterations")

plt.legend(loc=’upper left’)

plt.savefig(’report/iterations.pgf’)

10

label="

SSVd SSvd 000¢0T1- 0000TOOTTOOOTTTOOLLTITITITITA0 SSC 00%- TTTTTITITA0 O0O0OTTTOOTTTA0
SSVd SSVd 9969981 OOTOOTTTOOOTTTIO00TTTA0 99€T- 99¢1- OTOTOTOTOTOT90 OIOIOTOTOTOTA0
SSVd SSvd 0 090 0 666 090 LTTOOTTITII90
SSVd SSVd GCce98l TOOTTTOO0ITTOTTO00III90 G9¢l q9ct LOTOTOTOT0T90 TOTOTOTIOTOT90
SSVd SSvd 9¢61S1- OOTTOTTOOTTTIOTOITOLTA0 8ZE 0¥~ OTOTTTTOT40 OTTT0T100T90
SSVd SSvd 0088 0000TOTTTTOOTTOOTA0 00%- L61- 0000TTTO0T40 LTOTTTO00T190
SSVd SSVd 187911 LOOTTIO00LTO00TITA0 1¥€ Ive 10TOTOTI0190 LOTOTIOT0T90
SSVd SSvd 0 090 6I1 0 LTTOTTI190 090
SSVd SSVd 6909 LOTOTTIOITITOTA0 19 611 LT00LT90 LTTOTTI190
SSVd SSVd §8¥¢- [TOOOTTOOTOOTTITA0 T¥- a8 LTT0T01190 101010190
SSVd SSVd §8¥¢- LTOOOTTOOTOOTTITA0 S8 v- 101010190 LT10T0T190
SSVd SSVd §€9¢ LTOTOOTO0TOTA0 S8 £3 101010190 LTT1190
SSVd SSvVd Gl 1000100190 6¢C- g- 11000190 LTOT1190
SSVd SSVd 91 0100010140 6~ 81- LTTOLT90 OTTT0190
SSVd SSVd 1 190 I- 1- LITTIT90 LITTIT90
SSVd SSvd 0 090 0 g 090 10190
SSVd SSvd ¢ 0190 1I- % ITT190 011190
yjooq powr jooq 29p padadxa urq paoadxa dap rerdynuwr dop puedridnmuw uiq Ldnmuw urq puesdgmu

Bunypoayp J[as 10je[NUIS ¢ d[qeL,

11

