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Abstract

In this paper, the performance of Booth’s algorithm is compared to modified
Booth’s algorithm. Each multiplier is simulated in Python. The multipliers are
bench marked by counting the number of add and subtract operations for inputs
of various lengths. Results are analyzed and discussed to highlight the potential
tradeoffs one should consider when deciding what multiplier is to be used.

Introduction
Multiplication is among the most time consuming mathematical operations for pro-
cessors. In many applications, the time it takes to multiply dramatically influences the
speed of the program. Applications of digital signal processing (such as audio mod-
ification and image processing) require constant multiply and accumulate operations
for functions such as fast fourier transformations and convolutions. Other applications
are heavily dependent on multiplying large matrices, such as machine learning, 3D
graphics and data analysis. In such scenarios, the speed of multiplication is vital. Con-
sequently, most modern processors implement hardware multiplication. However, not
all hardware multiplication schemes are equal; there is often a stark contrast between
performance and hardware complexity. To further complicate things, multiplication
circuits perform differently depending on what numbers are being multiplied.

Algorithm Description
Booth’s algorithm computes the product of two signed numbers in two’s compliment
format. To avoid overflow, the result is placed into a register two times the size of the
operands (or two registers the size of a single operand). Additionally, the algorithm
must work with a space that is extended one bit more then the result. For the purpose
of brevity, the result register and extra bit will be referred to as the workspace, as the
algorithm uses this space for its computations. First, the multiplier is placed into the
workspace and shifted left by 1. From there, the multiplicand is used to either add or
subtract from the upper half of the workspace. The specific action is dependent on the
last two bits of the workspace.
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Bit 1 Bit 0 Action
0 0 None
0 1 Add
1 0 Subtract
1 1 None

After all iterations are complete, the result is arithmetically shifted once to the right,
and the process repeats for the number of bits in an operand.

Modified Booth’s algorithm functions similar to Booth’s algorithm, but checks the
last three bits instead. As such, there are a larger selection of actions for each iteration:

Bit 2 Bit 1 Bit 0 Action
0 0 0 None
0 0 1 Add
0 1 0 Add
0 1 1 Add ×2
1 0 0 Sub ×2
1 0 1 Sub
1 1 0 Sub
1 1 1 None

Because some operations require doubling the multiplicand, an additional extra bit
is added to the most significant side of the workspace to avoid overflow. After each
iteration, the result is arithmetically shifted right twice. The number of iterations is
only half of the length of the operands. After all iterations, the workspace is shifted
right once, and the second most significant bit is set to the first most significant bit as
the result register does not include the extra bit.

Simulation Implementation
Both algorithms were simulated in Python in attempts to utilize its high level nature
for rapid development. The table for Booth’s algorithm was preformed with a simple
if-then, while a switch case was used in modified Booth’s algorithm. Simple integers
were used to represent registers.

One objective of this paper is to analyze and compare the performance of these two
algorithms for various operand lengths. As such, the length of operands had to be
constantly accounted for. Arithmetic bitwise operations, including finding two’s com-
pliment, were all implemented using functions that took length as an input. Further
more, extra bits were cleared after each iteration.

To track down issues and test the validity of the multipliers, a debug function was
written. To allow Python to natively work with the operands, each value is calculated
from its two’s compliment format. The converted numbers are then multiplied, and
the result is used to verify both Booth’s Algorithm andModified Booth’s Algorithm. To
ensure that the debugging function itself doesn’t malfunction, all converted operands
and expected results are put into a single large table for checking. The exported version
of this table can be seen on the last page in table 3.
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The pseudo code below illustrates how each algorithm was implemented in soft-
ware. For the full code, refer to the listing at the end of the document.

Booth:

result = multiplier << 1

loop (operand length) times:

if last two bits are 01:

result(upper half) += multiplicand

if last two bits are 10:

result(upper half) += twos_comp(multiplicand)

remove extra bits from result

arithmatic shift result right

result >> 1

Modified booth:

multiplicand(MSB) = multiplicand(second MSB)

result = multiplier << 1

loop (operand length / 2) times:

if last two bits are 001 or 010:

result(upper half) += multiplicand

if last two bits are 011:

result(upper half) += multiplicand * 2

if last two bits are 100:

result(upper half) += twos_comp(multiplicand) * 2

if last two bits are 101 or 110:

result(upper half) += twos_comp(multiplicand)

remove extra bits from result

arithmatic shift result right twice

result >> 1

result(second MSB) = result(MSB)

result(MSB) = 0

Analysis
Modified Booth’s algorithm only requires half the iterations of Booth’s algorithm. As
such, it can be expected that the benefit of modified Booth’s algorithm increases two
fold with bit length. This can be shown by comparing the two curves in figure 1.

Despite this, the nature of both algorithms dictate that modified Booth’s algorithm
is not explicitly faster. Iteration count translates to the maximum number of additions
and subtractions. Figure 2 shows the performance of the two algorithms given different
input lengths, while table 1 shows the actual data used to generate the plot. There
are some interesting things to note. When operands contain repeating zeros or ones,
both operations preform similarly, as only shifting is required. Operands containing
entirely ones or zeros result in identical performance. On the contrary, alternating bits
within operands demonstrate where the two algorithms differ, as almost no bits can
be skipped over. Operands made entirely of alternating bits result in the maximum
performance difference, in which modified Booth’s algorithm is up to two times faster.
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Figure 1: Iteration count of various operand lengths.
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Figure 2: Add and Subtract operations of various operand lengths.

All of this needs to be consideredwhen deciding between the two algorithms. Mod-
ified Booth’s algorithm may improve speed, but requires substantially more hardware
to implement. One must consider if it’s worth the cost to optimize multiplication. In
many applications, fast multiplication is unnecessary; many early single-chip proces-
sors and microcontrollers didn’t implement multiplication, as they were intended for
simple embedded applications.
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Conclusion
Hardware multipliers can help accelerate applications in which multiplication is fre-
quent. When implementing hardwaremultipliers, it’s important to consider the advan-
tages and disadvantages of various multiplier schemes. Modified Booth’s algorithm
gives diminishing returns for smaller operands and requires significantly more logic.
In applications that depend heavily on fast multiplication of large numbers, modified
Booth’s algorithm is optimal.
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Appendix

multiplicand multiplier length booth modified booth
0b1110 0b1111 4 1 1
0b101 0b0 4 0 0
0b111111 0b111111 6 1 1
0b101110 0b110111 6 3 3
0b111011 0b100011 6 3 3
0b11111 0b1010101 8 8 4
0b11010111 0b1010101 8 8 4
0b1010101 0b11010111 8 5 4
0b1110111 0b110011 8 4 4
0b0 0b1110111 8 4 4
0b101010101 0b101010101 10 10 5
0b1100111011 0b1001110000 10 3 3
0b1001101110 0b101111010 10 6 4
0b10101010101 0b10101010101 12 12 6
0b1111100111 0b0 12 0 0
0b101010101010 0b101010101010 12 11 6
0b111001110000 0b11111111 12 2 2

Table 1: Number of additions and subtractions for various inputs.

multiplicand multiplier result (bin) result (hex)
0b1110 0b1111 0b10 0x2
0b101 0b0 0b0 0x0
0b111111 0b111111 0b1 0x1
0b101110 0b110111 0b10100010 0xa2
0b111011 0b100011 0b10010001 0x91
0b11111 0b1010101 0b101001001011 0xa4b
0b11010111 0b1010101 0b1111001001100011 0xf263
0b1010101 0b11010111 0b1111001001100011 0xf263
0b1110111 0b110011 0b1011110110101 0x17b5
0b0 0b1110111 0b0 0x0
0b101010101 0b101010101 0b11100011000111001 0x1c639
0b1100111011 0b1001110000 0b10011001111010000 0x133d0
0b1001101110 0b101111010 0b11011010111001101100 0xdae6c
0b10101010101 0b10101010101 0b111000110111000111001 0x1c6e39
0b1111100111 0b0 0b0 0x0
0b101010101010 0b101010101010 0b111000111100011100100 0x1c78e4
0b111001110000 0b11111111 0b111111100111000110010000 0xfe7190

Table 2: Results of multiplication according to simulated multipliers.
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Code listing

1 #!/usr/bin/env python3

2 from tabulate import tabulate

3 import matplotlib

4 import matplotlib.pyplot as plt

5

6 # finds the two’s compliment of a given number

7 def twos_comp(num , length):

8 if num == 0:

9 return 0

10 return abs((num ^ ((1 << length) - 1)) + 1)

11

12 # arithmaticlly shifts right; divides by 2

13 def arithmatic_shiftr(num , length , times):

14 for t in range(times):

15 num = (num >> 1) | ((1 << length - 1) & num)

16 return num

17

18 # arithmaticlly shifts left; multiplies by 2

19 def arithmatic_shiftl(num , length):

20 if num & (1 << length - 1):

21 return (num << 1) | (1 << length - 1)

22 else:

23 return (num << 1) & ~(1 << length - 1)

24

25 # only used for debugging function to allow python to natively use two’

s compliment numbers

26 def twoscomp_to_int(num , length):

27 if num & (1 << length - 1):

28 return (-1 * twos_comp(num , length))

29 return num & (1 << length) - 1

30

31 def debug(results):

32 headers = [’multiplicand bin’, ’multiplier bin’, ’multiplicand dec’,

’multiplier dec’, ’expected bin’, ’expected dec’, ’booth’, ’mod

booth ’]

33 table = []

34 for [multiplicand_bin , multiplier_bin , result_booth , result_booth_mod

, length] in results:

35 multiplicand = twoscomp_to_int(multiplicand_bin , length)

36 multiplier = twoscomp_to_int(multiplier_bin , length)

37 expected = multiplicand * multiplier

38 expected_bin = (twos_comp(expected , length * 2), expected) [

expected > 0]

39 success_b = [bin(result_booth), "PASS"] [result_booth ==

expected_bin]

40 success_bm = [bin(result_booth_mod), "PASS"] [result_booth_mod ==

expected_bin]

41

42 table.append ([bin(multiplicand_bin), bin(multiplier_bin),

multiplicand , multiplier , bin(expected_bin), expected , success_b ,

success_bm ])

43 with open("report/debug_table.tex", "w") as f:

44 f.write(tabulate(table , headers , tablefmt="latex_longtable"))

45 print("\nCHECKS: \n", tabulate(table , headers), "\n")

46

47
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48

49 def booth(multiplier , multiplicand , length):

50 operations = 0

51 multiplicand_twos_comp = twos_comp(multiplicand , length)

52 result = multiplier << 1 # extended bit

53 for i in range(length): # iteration count is size of one operand

54 op = result & 0b11

55 if op == 0b01:

56 operations += 1 # add upper half by multiplicand

57 result += multiplicand << (length + 1)

58 if op == 0b10:

59 operations += 1 # subtract upper half by multiplicand

60 result += multiplicand_twos_comp << (length + 1)

61 result &= (1 << (length * 2) + 1) - 1 # get rid of any overflows

62 result = arithmatic_shiftr(result , (length * 2) + 1, 1)

63 result = result >> 1

64 return (result , operations)

65

66 def booth_mod(multiplier , multiplicand , length):

67 operations = 0

68 # extend workspace by *two* bits , MSB to prevent overflow when mult/

sub by 2

69 multiplicand |= ((1 << length - 1) & multiplicand) << 1

70 multiplicand_twos_comp = twos_comp(multiplicand , length + 1)

71 result = multiplier << 1

72 for i in range(int(( length) / 2)): # number of iterations is half the

73 op = result & 0b111

74 match op: # take action dependent on last two bits

75 case 0b010 | 0b001: # add upper half by multiplicand

76 print("add")

77 result += multiplicand << (length + 1)

78 case 0b011: # add upper half by 2x multiplicand

79 print("add * 2")

80 result += arithmatic_shiftl(multiplicand , length + 1) << (

length + 1)

81 case 0b100: # subtract upper half by 2x multiplicand

82 print("sub * 2")

83 result += arithmatic_shiftl(multiplicand_twos_comp , length + 1)

<< (length + 1)

84 case 0b101 | 0b110: # subtract upper half my multiplicand

85 print("sub ")

86 result += multiplicand_twos_comp << (length + 1)

87 if op != 0b111 and op != 0:

88 operations += 1

89 result &= (1 << (( length * 2) + 2)) - 1 # get rid of any overflows

90 result = arithmatic_shiftr(result , (length * 2) + 2, 2)

91 # shifts the workspace right by one , while duplicating extra sign bit

to second MSB , and clearing the MSB.

92 # this ensures the result length is 2x the operands.

93 result = (( result | ((1 << (( length * 2) + 2)) >> 1)) & ((1 << ((

length * 2) + 1)) - 1)) >> 1

94 return (result , operations)

95

96 if __name__ == "__main__":

97 # set up headers for tables

98 result_headers = [’multiplicand ’, ’multiplier ’, ’result (bin)’, ’

result (hex)’]

99 result_table = []
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100

101 opcount_headers = [’multiplicand ’, ’multiplier ’, ’length ’, ’booth ’, ’

modified booth ’]

102 opcount_table = []

103

104 lengths = []

105 ops_booth = []

106 ops_mod_booth = []

107

108 debug_results = []

109

110 # Reads operands from file.

111 # Each line needs to contain two operands in binary two’s compliment

form seperated by a space.

112 # Leading zeros should be appended to convey the length of operands.

113 # Operands must have the same size.

114 with open(’input.txt’) as f:

115 input_string = f.read().split(’\n’)

116

117 for operation in input_string:

118 if operation == ’’ or operation [0] == ’#’:

119 continue

120 length = len(operation.split(" ")[0])

121 multiplicand = int(operation.split(" ")[0], 2)

122 multiplier = int(operation.split(" ")[1], 2)

123

124 # get result and operation count of both algorithims

125 result_booth = booth(multiplier , multiplicand , length)

126 result_mod_booth = booth_mod(multiplier , multiplicand , length)

127

128 # gather data for matplotlib

129 ops_booth.append(result_booth [1])

130 ops_mod_booth.append(result_mod_booth [1])

131 lengths.append(length)

132

133 # gather data for report results table

134 result_table.append ([bin(multiplicand), bin(multiplier), bin(

result_booth [0]), hex(result_booth [0])])

135

136 # gather data for test function to check if simulator is working

137 debug_results.append ([ multiplicand , multiplier , result_booth [0],

result_mod_booth [0], length ])

138

139 # gather data for operation count table

140 opcount_table.append ([bin(multiplicand), bin(multiplier), length ,

result_booth [1], result_mod_booth [1]])

141

142 # tests validity of results

143 debug(debug_results)

144

145 # generate tables for report

146 print(tabulate(result_table , result_headers , tablefmt="latex"))

147 print(tabulate(opcount_table , opcount_headers))

148

149 # output

150 with open("report/result_table.tex", ’w’) as f:

151 f.write(tabulate(result_table , result_headers , tablefmt="

latex_booktabs"))
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152

153 with open("report/speed_table.tex", "w") as f:

154 f.write(tabulate(opcount_table , opcount_headers , tablefmt="

latex_booktabs"))

155

156 # set up plotting

157 matplotlib.use("pgf")

158 matplotlib.rcParams.update ({

159 "pgf.texsystem": "pdflatex",

160 ’font.family ’: ’serif’,

161 ’text.usetex ’: True ,

162 ’pgf.rcfonts ’: False ,

163 })

164

165 # generate table for operations vs operand length

166 plt.gcf().set_size_inches(w=4.5, h=3.5)

167 plt.plot(lengths , ops_booth , ’^--m’, label=’booths algorithim ’)

168 plt.plot(lengths , ops_mod_booth , ’v--c’, label=’modified booths

algorithim ’)

169 plt.gca().set_xlabel("Length of Operands")

170 plt.gca().set_ylabel("Number of Additions and Subtractions")

171 plt.legend(loc=’upper left’)

172 plt.savefig(’report/performance.pgf’)

173

174

175 # generate table of iterations vs operand length

176 iters_booth = []

177 iters_mod_booth = []

178 for length in lengths:

179 iters_booth.append(length)

180 iters_mod_booth.append(int(length / 2))

181

182 plt.figure ()

183 plt.gcf().set_size_inches(w=4.5, h=3.5)

184 plt.plot(lengths , lengths , ’^--m’, label=’booths algorithim ’)

185 plt.plot(lengths , [int(l/2) for l in lengths], ’v--c’, label=’

modified booths algorithim ’)

186 plt.gca().set_xlabel("Operand Length")

187 plt.gca().set_ylabel("Number of iterations")

188 plt.legend(loc=’upper left’)

189 plt.savefig(’report/iterations.pgf’)
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