
  

HEAPLAB 

GLIBC Heap Exploitation Bible 

Max Kamper 



Table of Contents 

GLIBC .................................................................................................................................... 1 

Malloc................................................................................................................................... 1 

Malloc Internals.................................................................................................................... 1 

Chunks .......................................................................................................................................... 1 

Unlinking ....................................................................................................................................... 3 
Fastbin & Tcache Unlink ........................................................................................................................... 3 
Partial Unlink ........................................................................................................................................... 3 
Full Unlink ................................................................................................................................................ 3 

Heaps ............................................................................................................................................ 3 

Arenas ........................................................................................................................................... 4 
Arena Layout ........................................................................................................................................... 4 
mutex ...................................................................................................................................................... 4 
flags ......................................................................................................................................................... 4 
have_fastchunks ...................................................................................................................................... 4 
Fastbins ................................................................................................................................................... 4 
Top .......................................................................................................................................................... 5 
Last_remainder ........................................................................................................................................ 5 
Unsortedbin ............................................................................................................................................. 6 
Smallbins ................................................................................................................................................. 6 
Largebins ................................................................................................................................................. 7 
Binmap .................................................................................................................................................... 7 
next ......................................................................................................................................................... 7 
next_free ................................................................................................................................................. 8 
attached_threads ..................................................................................................................................... 8 
system_mem ........................................................................................................................................... 8 
max_system_mem ................................................................................................................................... 8 

Remaindering................................................................................................................................ 8 
Exhausting ............................................................................................................................................... 8 

Unlinking ....................................................................................................................................... 8 
Fastbin & Tcache Unlink ........................................................................................................................... 8 
Partial Unlink ........................................................................................................................................... 8 
Full Unlink ................................................................................................................................................ 9 

Malloc Parameters ........................................................................................................................ 9 

Tcache ......................................................................................................................................... 10 
Tcache Dumping .................................................................................................................................... 11 

Malloc Functions ......................................................................................................................... 11 
Malloc.................................................................................................................................................... 11 
Calloc ..................................................................................................................................................... 12 
Realloc ................................................................................................................................................... 12 
Free ....................................................................................................................................................... 12 

Malloc Hooks .............................................................................................................................. 12 

Mitigations .................................................................................................................................. 13 



Malloc Flowchart ........................................................................................................................ 15 

Unsortedbin Flowchart ............................................................................................................... 16 

Sysmalloc Flowchart ................................................................................................................... 17 

Free Flowchart ............................................................................................................................ 18 

Exploitation Techniques ..................................................................................................... 19 

House of Force ............................................................................................................................ 19 
Overview ............................................................................................................................................... 19 
Detail ..................................................................................................................................................... 19 
Further use ............................................................................................................................................ 19 
Limitations ............................................................................................................................................. 19 

Fastbin Dup ................................................................................................................................. 20 
Overview ............................................................................................................................................... 20 
Detail ..................................................................................................................................................... 20 
Further use ............................................................................................................................................ 20 
Limitations ............................................................................................................................................. 20 

Unsafe Unlink ............................................................................................................................. 21 
Overview ............................................................................................................................................... 21 
Detail ..................................................................................................................................................... 21 
Further use ............................................................................................................................................ 21 
Limitations ............................................................................................................................................. 21 

Safe Unlink .................................................................................................................................. 22 
Overview ............................................................................................................................................... 22 
Detail ..................................................................................................................................................... 22 
Further use ............................................................................................................................................ 22 
Limitations ............................................................................................................................................. 22 

Unsortedbin Attack ..................................................................................................................... 23 
Overview ............................................................................................................................................... 23 
Detail ..................................................................................................................................................... 23 
Further use ............................................................................................................................................ 23 
Limitations ............................................................................................................................................. 23 

House of Orange ......................................................................................................................... 24 
Overview ............................................................................................................................................... 24 
Detail ..................................................................................................................................................... 24 
Further use ............................................................................................................................................ 25 
Limitations ............................................................................................................................................. 25 

House of Spirit ............................................................................................................................ 26 
Overview ............................................................................................................................................... 26 
Detail ..................................................................................................................................................... 26 
Further use ............................................................................................................................................ 26 
Limitations ............................................................................................................................................. 26 

House of Lore .............................................................................................................................. 27 
Overview ............................................................................................................................................... 27 
Detail ..................................................................................................................................................... 27 
Limitations ............................................................................................................................................. 27 

House of Einherjar ...................................................................................................................... 28 



Overview ............................................................................................................................................... 28 
Detail ..................................................................................................................................................... 28 
Further use ............................................................................................................................................ 28 
Limitations ............................................................................................................................................. 28 

House of Rabbit .......................................................................................................................... 29 
Overview ............................................................................................................................................... 29 
Detail ..................................................................................................................................................... 29 
Further use ............................................................................................................................................ 29 
Limitations ............................................................................................................................................. 29 

Poison Null Byte .......................................................................................................................... 30 
Overview ............................................................................................................................................... 30 
Detail ..................................................................................................................................................... 30 
Further use ............................................................................................................................................ 30 
Limitations ............................................................................................................................................. 30 

House of Corrosion ..................................................................................................................... 31 
Overview ............................................................................................................................................... 31 
Detail ..................................................................................................................................................... 31 
Further use ............................................................................................................................................ 32 
Limitations ............................................................................................................................................. 32 

Tcache Dup ................................................................................................................................. 33 
Overview ............................................................................................................................................... 33 
Detail ..................................................................................................................................................... 33 
Further use ............................................................................................................................................ 33 

Appendix A: Quick Reference.............................................................................................. 34 

Pwndbg ....................................................................................................................................... 34 
Arenas ................................................................................................................................................... 34 
Bins........................................................................................................................................................ 34 
Chunks ................................................................................................................................................... 34 
Miscellaneous ........................................................................................................................................ 34 

Pwntools ..................................................................................................................................... 35 
Symbols ................................................................................................................................................. 35 
Packing .................................................................................................................................................. 35 
Interacting ............................................................................................................................................. 35 

One-Gadget................................................................................................................................. 35 



HeapLAB Max Kamper 

 
1 

GLIBC 
GLIBC stands for the “GNU C Library”, and is described by the GLIBC web page 

gnu.org/software/libc/ as “[providing] the core libraries for the GNU system and GNU/Linux systems, 

as well as many other systems that use Linux as the kernel. These libraries provide critical APIs 

[which include] such foundational facilities as open, read, write, malloc, printf, getaddrinfo, dlopen, 

pthread_create, crypt, login, exit and more.” 

The GLIBC project is open source and has been maintained by a community of developers for over 

30 years. 

Malloc 
Malloc is the name given to the GLIBC memory allocator. Exploiting GLIBC’s malloc has been part of 

hacker tradition for over 20 years and is still an active field. 

Malloc is a collection of functions and metadata that are used to provide a running process with 

dynamic memory. This metadata consists of arenas, heaps and chunks. Arenas are structures used to 

administrate heaps. Heaps are large, contiguous blocks of memory which can be broken down into 

chunks. Malloc’s functions use arenas and their heaps to transact chunks of memory with a process. 

Malloc Internals 

Chunks 
Chunks are the fundamental unit of memory that malloc deals in, typically they take the form of 

pieces of heap memory, although they can also be created as a separate entity by a call to mmap(). 

Chunks consist of a size field followed by user data, as shown in Figure 1. 

Whilst programs deal with pointers to chunk user data, malloc considers chunks to start 8 bytes 

before their size field (apart from the tcache which also uses pointers to user data). 

A chunk’s size field indicates the amount of user data it has in bytes, plus the number of bytes taken 

up by the size field itself. A chunk’s size field is 8 bytes long, so a chunk with 24 bytes of user data 

has a size field that holds the value 0x20, or 32. The minimum usable chunk size is 0x20, although so-

called fencepost chunks with size 0x10 are used internally by malloc. 

Chunk sizes increase in increments of 16 bytes, so the next size up from a 0x20 chunk is a 0x30 

chunk, then a 0x40 chunk etc. This means that the least-significant nybble of a size field is not used 

to represent chunk size, instead it holds flags that indicate chunk state. These flags are, from least to 

most significant: PREV_INUSE – when set indicates that the previous chunk is in use, when clear 

indicates that the previous chunk is free. IS_MMAPPED – when set indicates that this chunk was 

allocated via mmap(). NON_MAIN_ARENA – when set indicates that this chunk does not belong to 

the main arena. These flags are shown in Figure 2. 

Figure 1: Chunk layout 

https://www.gnu.org/software/libc/
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A chunk’s user data is the memory available to the process that requested it, the address of this user 

data is returned by malloc’s allocation functions. 

Chunks are in either of 2 mutually exclusive states: allocated or free. When a chunk is free, up to 5 

quadwords of its user data are repurposed as malloc metadata and may even become part of the 

succeeding chunk. Details on metadata used by each bin is available in the Arenas section. 

The 1st quadword of a chunk’s user data is repurposed as a forward pointer (fd) when that chunk is 

freed, all bins use a forward pointer. The 2nd quadword is repurposed as a backward pointer in free 

chunks linked into any doubly linked list such as an unsortedbin or smallbins. The 3rd & 4th 

quadwords are repurposed as fd_nextsize & bk_nextsize pointers, which are used solely by the 

largebins. The location of this metadata is shown in Figure 3. 

In bins that support consolidation the last quadword of a free chunk’s user data is repurposed as a 

prev_size field, which indicates the size of the freed chunk in the same way as its size field, but 

without the flags. Malloc considers a prev_size field part of the succeeding chunk and its presence is 

accompanied by clearing the succeeding chunk’s PREV_INUSE flag, as shown in Figure 4. 

Figure 2: Size field flags 

Figure 3: Inline malloc metadata 

Figure 4: A prev_size field 
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In GLIBC versions >= 2.29 the 2nd quadword of free chunks linked into a tcachebin get repurposed as 

a “key” field, which is used to detect double-free scenarios. Figure 5 shows a free chunk in a 

tcachebin. 

Unlinking 
During allocation and free operations chunks may need to be unlinked from the free list in which 

they reside, the chunk being unlinked is often referred to as the “victim” chunk in the malloc source. 

See the Arenas section for more information on free lists. There are a variety of ways in which 

unlinking can occur: 

Fastbin & Tcache Unlink 
The fastbins and tcache use singly linked, LIFO lists. Unlinking chunks from these lists simply involves 

copying the victim chunk’s fd into the head of the list. For more information on fastbins see the 

Arenas section and for more information on the tcache see the Tcache section. 

Partial Unlink 
A partial unlink occurs when a chunk is allocated from an unsortedbin or smallbin. The victim 

chunk’s bk is followed and the address of the head of the bin is copied into the destination chunk’s 

fd. The victim chunk’s bk is then copied over the bk of the head of the bin. For more information on 

the unsortedbin and smallbins see the Arenas section. 

Full Unlink 
A full unlink occurs when a chunk is consolidated into another free chunk. They also occur when a 

chunk is allocated from the largebins or via a binmap search. The victim chunk’s fd is followed and 

the victim bk is copied over the destination bk. Then the victim bk is followed and the victim fd is 

copied over the destination fd. 

Heaps 
Heaps are contiguous blocks of memory, chunks of which malloc allocates to a process. They are 

administrated differently depending on whether they belong to the main arena or not, see the 

Arenas section for more information on malloc’s arenas. 

Heaps can be created, extended, trimmed, or destroyed; a main arena heap is created during the 

first request for dynamic memory, heaps for other arenas are created via the new_heap() function. 

Main arena heaps are grown and shrunk via the brk() syscall, which requests more memory from, or 

returns memory to the kernel. Non-main arena heaps are created with a fixed size and the 

grow_heap() and shrink_heap() functions map more or less of this space as writable. Non-main 

arena heaps may also be destroyed by the delete_heap() macro during calls to heap_trim().  

Figure 5: Tcache metadata 
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Arenas 
Malloc administrates a process’s heaps using malloc_state structs, known as arenas. These arenas 

consist primarily of “bins”, used for recycling free chunks of heap memory. A single arena can 

administrate multiple heaps simultaneously. 

New arenas are created via the _int_new_arena() function and initialised with malloc_init_state(). 

The maximum number of concurrent arenas is based on the number of cores available to a process. 

Arena Layout 

mutex 
Serialises access to an arena. Malloc locks an arena’s mutex before requesting heap memory from it. 

flags 
Holds information such as whether an arena’s heap memory is contiguous. 

have_fastchunks 
Treated as a bool that indicates the fastbins may not be empty. Set whenever a chunk is linked into a 

fastbin and cleared by malloc_consolidate(). 

N.B. This field and the padding DWORD that follow it are only present in GLIBC versions >= 2.27. In 

GLIBC versions <= 2.26 it is part of the flags field. 

Fastbins 
The malloc source describes fastbins as “special bins that hold returned chunks without 

consolidating their spaces”. They are a collection of singly linked, non-circular lists that each hold 

free chunks of a specific size. There are 10 fastbins per arena*, each responsible for holding free 

chunks with sizes 0x20 through 0xb0. For example, a 0x20 fastbin only holds free chunks with size 

Figure 6: Arena layout 



HeapLAB Max Kamper 

 
5 

0x20, and a 0x30 fastbin only holds free chunks with size 0x30, etc. Although only 7 of these fastbins 

are available under default conditions, the mallopt() function can be used to change this number by 

modifying the global_max_fast variable. 

The head of each fastbin resides in its arena, although the links between subsequent chunks in that 

bin are stored inline. The first quadword of a chunk’s user data is repurposed as a forward pointer 

(fd) when it is linked into a fastbin. A null fd indicates the last chunk in a fastbin. 

Fastbins are last-in, first-out (LIFO) structures, freeing a chunk into a fastbin links it into the head of 

that fastbin. Likewise, requesting chunks of a size that match a non-empty fastbin will result in 

allocating the chunk at the head of that fastbin. 

Free chunks are linked directly into their corresponding fastbin if their corresponding tcachebin is 

full. Fastbin searches are conducted after a tcache search and before any other bins are searched, 

when the request size falls into fastbin range. 

*The 0xb0 bin is created in error, this is because of the disparity between how the MAX_FAST_SIZE 

constant is treated as a request size versus how the global_max_fast variable is treated as a chunk 

size. 

Top 
From malloc.c: a top chunk is “the topmost available chunk, i.e. the one bordering the end of 

available memory”. After a new arena is initialised a top chunk always exists and there is only ever 

one per arena. Requests are only serviced from a top chunk when they can’t be serviced from any 

other bins in the same arena. 

When a top chunk is too small to service a request below the mmap threshold, malloc attempts to 

grow the heap that the top chunk resides on via the sysmalloc() function then extend the top chunk. 

If this is unsuccessful, a new heap is allocated and becomes that arena’s top chunk, and any 

remaining memory in the old top chunk is freed. To achieve this, malloc places 2 0x10-sized 

“fencepost” chunks at the end of the heap to ensure forward consolidation attempts don’t result in 

an out-of-bounds read. The functions used to administrate heaps are listed in the Heaps section. 

Malloc keeps track of the remaining memory in a top chunk using its size field, the prev_inuse bit of 

which is always set. A top chunk always contains enough memory to allocate a minimum-sized chunk 

and always ends on a page boundary. 

Last_remainder 
This field holds the address of the chunk resulting from the previous remainder operation. It is 

populated by requests that fall into smallbin range that remainder from an unsortedbin (from an 

existing last_remainder), or from a binmap search. 

The last_remainder field is not populated from largebin remainders, nor from unsortedbin or 

binmap searches when the request size was outside of smallbin range. 

To remainder from an unsortedbin, the last remainder chunk must be at the head of the 

unsortedbin. Learn more about remaindering in the Remaindering section. 

Figure 7: A fastbin linked list 
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Unsortedbin 
An unsortedbin is a doubly linked, circular list that holds free chunks of any size. The head and tail of 

an unsortedbin reside in its arena whist fd & bk links between subsequent chunks in the bin are 

stored inline on a heap. 

Free chunks are linked directly into the head of an unsortedbin when their corresponding tcachebin 

is full or they are outside tcache size range (0x420 & above under default conditions). In versions of 

GLIBC compiled without the tcache (GLIBC versions <= 2.25 by default) free chunks are linked 

directly into the head of an unsortedbin when they are outside fastbin size range (0x90 & above 

under default conditions). 

An unsortedbin is searched after the tcache, fastbins, and smallbins when the request size falls into 

those ranges, but before the largebins. Unsortedbin searches start from the back of the bin and 

work their way towards the front, if a chunk exactly fits the normalized request size it is allocated 

and the search stops, otherwise it is sorted into its appropriate smallbin or largebin. 

If the chunk being checked during an unsortedbin scan isn’t an exact fit but is the last remainder and 

large enough to remainder again, it is remaindered. Chunks that are the result of this remainder 

operation are linked back into the head of the unsortedbin. 

Smallbins 
The smallbins are a collection of doubly linked, circular lists that each hold free chunks of a specific 

size. There are 62 smallbins per arena, each responsible for holding free chunks with sizes 0x20 

through 0x3f0, overlapping the fastbin sizes. For example, a 0x20 smallbin only holds free chunks 

with size 0x20, and a 0x300 smallbin only holds free chunks with size 0x300, etc. 

The head of each smallbin resides in its arena, although the links between subsequent chunks in that 

bin are stored inline. Free chunks are only linked into their corresponding smallbin via its arena’s 

unsortedbin, when sorting occurs. When a chunk is linked into a smallbin, the 1st quadword of its 

user data is repurposed as a forward pointer (fd) and the 2nd quadword is repurposed as a backward 

pointer (bk). 

Smallbins are first-in, first-out (FIFO) structures, sorting a chunk into a smallbin links it into the head 

of that smallbin. Likewise, requesting chunks of a size that match a non-empty smallbin will result in 

allocating a chunk from the tail of that smallbin. 

Smallbin searches are conducted after a tcache search, after a fastbin search if the request was in 

fastbin range, but before any other bins are searched, when the request size falls into smallbin 

range. 

Figure 8: Unsortedbin doubly linked list 

Figure 9: Smallbin doubly linked list 
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Largebins 
The largebins are a collection of doubly linked, circular lists that each hold free chunks within a range 

of sizes. There are 63 largebins per arena, each responsible for holding free chunks with sizes 0x400 

and up. For example, a 0x400 largebin holds free chunks with sizes between 0x400 – 0x430, whereas 

a 0x2000 largebin holds chunks with sizes between 0x2000 – 0x21f0. 

The head of each largebin resides in its arena, although the links between subsequent chunks in that 

bin are stored inline. Free chunks are only linked into their corresponding largebin via its arena’s 

unsortedbin, when sorting occurs. 

Largebins are maintained in descending size order, with the largest chunk in that bin accessible via 

the bin’s fd pointer, and the smallest chunk accessible via its bk. When a chunk is linked into a 

largebin, the 1st quadword of its user data is repurposed as a forward pointer (fd) and the 2nd 

quadword is repurposed as a backward pointer (bk). 

The first chunk of its size to be linked into a largebin has the 3rd & 4th quadwords of its user data 

repurposed as skip list pointers, fd_nextsize & bk_nextsize respectively. These nextsize pointers form 

another doubly linked, circular list which holds the first chunk of each size linked into that bin. Once 

the first chunk of its size has been linked into a largebin, subsequent chunks of the same size are 

added after the first chunk of that size to avoid rerouting the skip list. 

The largebins are searched during requests for chunks with size 0x400 and above, after an 

unsortedbin scan, but before a binmap search. During a largebin search, malloc ensures that the 

appropriate bin holds a chunk that is large enough to support the request; if so, the bin is scanned 

from back to front for a chunk that is either an exact fit or larger. Malloc will only allocate a chunk 

that holds skip list pointers if it is the last chunk of its size, otherwise it allocates the chunk of the 

same size after the skip chunk, this avoids having to reroute the skip list too often. 

Any non-exact fitting allocations from a largebin are exhausted or remaindered, but the 

last_remainder field is not set. 

Binmap 
The binmap is bit vector that loosely represents which of an arena’s smallbins & largebins are 

occupied. It is used by malloc to quickly find the next largest, occupied bin when a request couldn’t 

be serviced from its appropriate bins. 

Binmap searches occur after an unsuccessful unsortedbin or largebin search, depending on request 

size. Malloc finds the next largest, occupied bin and exhausts/remainders the last chunk in that bin, 

in the latter case the remainder is advertised as the last remainder if the request was in smallbin 

range. 

A bin is marked as occupied when a chunk is sorted into it during an unsortedbin scan. A bin is 

marked as empty when a binmap search finds an empty bin that was marked as occupied. 

next 
A singly linked, circular list of all arenas belonging to this process. 

Figure 10: Largebin doubly linked list with skip list 
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next_free 
A singly linked, non-circular list of free arenas (arenas with no threads attached). The head of this list 

is the free_list symbol. 

attached_threads 
The number of threads concurrently using this arena. 

system_mem 
The total writable memory currently mapped by this arena. 

max_system_mem 
The largest amount of writable memory this arena had mapped at any one time. Used by calloc() to 

determine if freshly mapped heap memory needs to be zeroed. 

Remaindering 
Remaindering is simply the term malloc gives to splitting one free chunk down into two smaller 

chunks, then allocating the appropriate chunk. The remaining chunk is linked into the unsortedbin 

belonging to the chunk’s arena. 

For example, during a request for a 0x100-sized chunk, if the thread’s arena only has a 0x300-sized 

chunk to offer, malloc will unlink the 0x300 chunk from its free list, split a 0x100 chunk off from it, 

link the so-called remainder (a 0x200-sized chunk) into the head of the unsortedbin and allocate the 

0x100 chunk. 

Remaindering can occur at one of 3 points in the malloc flowchart: during allocations from the 

largebins, during a binmap search, and from a last remainder during unsortedbin scanning. 

Exhausting 
In the case that a thread requests a 0x80-sized chunk, and its arena only has a 0x90-sized chunk 

available, malloc will “exhaust” the 0x90 chunk by allocating the whole thing rather than 

remaindering it. This is because there isn't enough space left over for a minimum sized chunk after 

taking 0x80 bytes away from a 0x90 chunk. 

Unlinking 
During allocation and free operations chunks may need to be unlinked from the free list in which 

they reside, the chunk being unlinked is often referred to as the “victim” chunk in the malloc source. 

See the Arenas section for more information on free lists. There are a variety of ways in which 

unlinking can occur: 

Fastbin & Tcache Unlink 
The fastbins and tcache use singly linked, LIFO lists. Unlinking chunks from these lists simply involves 

copying the victim chunk’s fd into the head of the list. For more information on fastbins see the 

Arenas section and for more information on the tcache see the Tcache section. 

Partial Unlink 
A partial unlink occurs when a chunk is allocated from an unsortedbin or smallbin. The victim 

chunk’s bk is followed and the address of the head of the bin is copied into the destination chunk’s 

fd. The victim chunk’s bk is then copied over the bk of the head of the bin. For more information on 

the unsortedbin and smallbins see the Arenas section. 
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Full Unlink 
A full unlink occurs when a chunk is consolidated into another free chunk. They also occur when a 

chunk is allocated from the largebins or via a binmap search. The victim chunk’s fd is followed and 

the victim bk is copied over the destination bk. Then the victim bk is followed and the victim fd is 

copied over the destination fd. 

Malloc Parameters 
The malloc parameters structure holds variables that dictate how malloc operates, it is defined as a 

malloc_par struct: 

struct malloc_par { 

 /* Tunable parameters. */ 
 unsigned long trim_threshold; 

 INTERNAL_SIZE_T top_pad; 

 INTERNAL_SIZE_T mmap_threshold; 
 INTERNAL_SIZE_T arena_test; 

 INTERNAL_SIZE_T arena_max; 

 /* Memory map support. */ 
 int n_mmaps; 

 int n_mmaps_max; 

 int max_n_mmaps; 
 /* The mmap_threshold is dynamic, until the user sets 

    it manually, at which point we need to disable any 

    dynamic behaviour. */ 
 int no_dyn_threshold; 

 /* Statistics. */ 

 INTERNAL_SIZE_T mmapped_mem; 
 INTERNAL_SIZE_T max_mmapped_mem; 

 /* First address handed out by MORECORE/sbrk. */ 

 char* sbrk_base; 
#if USE_TCACHE 

 /* Maximum number of buckets to use. */ 
 size_t tcache_bins; 

 size_t tcache_max_bytes; 

 /* Maximum number of chunks in each bucket. */ 
 size_t tcache_count; 

 /* Maximum number of chunks to remove from the unsorted list, which 

    aren't used to prefill the cache. */ 
 size_t tcache_unsorted_limit; 

#endif 

}; 
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Tcache 
In GLIBC versions >= 2.26 each thread is allocated its own structure called a tcache, or thread cache. 

A tcache behaves like an arena, but unlike normal arenas tcaches aren’t shared between threads. 

They are created by allocating space on a heap belonging to their thread’s arena and are freed when 

the thread exits. A tcache’s purpose is to relieve thread contention for malloc’s resources by giving 

each thread its own collection of chunks that aren’t shared with other threads using the same arena. 

A tcache takes the form of a tcache_perthread_struct, shown below in Figure 11, which holds the 

head of 64 tcachebins preceded by an array of counters which record the number of free chunks in 

each tcachebin. 

Note that here “counts” is represented as an array of words, which is only the case in GLIBC versions 

>= 2.30, prior to this it was an array of chars. Under default conditions a tcache holds chunks with 

sizes 0x20 – 0x410 inclusive. These tcachebins behave similarly to fastbins, with each acting as the 

head of a singly linked, non-circular list of free chunks of a specific size. The first entry in the counts 

array keeps track of the number of free chunks linked into the 0x20 tcachebin, the second entry 

tracks the 0x30 tcachebin etc. 

Under default conditions there is a limit imposed on the number of free chunks a tcachebin can hold, 

this number is held in the malloc_par struct under the tcache_count member. When a tcachebin’s 

count reaches this limit, free chunks of that bin’s size are instead treated as they would be without a 

tcache present. For example, if the 0x20 tcachebin is full (it holds 7 free chunks) the next 0x20-sized 

chunk to be freed would be linked into the 0x20 fastbin. Malloc uses a tcache’s counts array to 

determine whether a bin is full. 

Figure 11: A tcache_perthread struct 
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Allocations from a thread’s tcache take priority over its arena, this operation is performed from the 

__libc_malloc() function and does not enter _int_malloc(). Freed chunks in tcache size range are 

linked into a thread’s tcache unless the target tcachebin is full, in which case the thread’s arena is 

used. Note that tcache entries use pointers to user data rather than chunk metadata. 

Tcache Dumping 
In versions of GLIBC compiled with tcache support, chunks in tcache size range are dumped into a 

tcache when a thread is allocated a chunk from its arena. When a chunk is allocated from the 

fastbins or smallbins, malloc dumps any remaining free chunks in that bin into their corresponding 

tcachebin until it is full, as shown in Figure 12 below. 

When an unsortedbin scan occurs, malloc dumps any exact-fitting chunks it finds into their 

corresponding tcachebin. If the target tcachebin is full and malloc finds another exact-fitting chunk 

in the unsortedbin, that chunk is allocated. If the unsortedbin scan is completed and one or more 

chunks were dumped into a tcachebin, a chunk is allocated from that tcachebin. 

Malloc Functions 

Malloc 

void* malloc (size_t bytes) 

The GLIBC dynamic memory allocation function: takes a request size in bytes as its only argument 

and returns a pointer to the uninitialized user data region of an appropriately sized chunk of heap 

memory. The malloc symbol is an alias to __libc_malloc(), which is in turn a wrapper around the 

_int_malloc() function where the majority of allocation code resides. 

  

Figure 12: Tcache dumping from a fastbin 
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Calloc 
void* calloc (size_t n, size_t elem_size) 

Calloc is a wrapper around malloc() that allocates memory for an array of “n” elements of size “size”. 

The memory returned by calloc() is initialized to zero, calloc() uses some optimizations to ensure this 

is done efficiently. Calloc() does not allocate from the tcache, it is not clear whether this is intended. 

Realloc 
void* realloc (void* oldmem, size_t bytes) 

Provides enough dynamic memory to hold “bytes” bytes of data, “oldmem” is a pointer originally 

provided by one of the memory allocation functions. This may involve allocating a new chunk, 

copying the data in the “oldmem” chunk, freeing “oldmem” and returning the newly allocated 

chunk. Realloc() uses some optimizations to ensure this is done efficiently, for example by merging 

forward with a free chunk to avoid the copy operation. When “bytes” is 0 this is an implicit free() 

operation. 

Free 
void free (void* mem) 

The GLIBC dynamic memory recycling function: takes a pointer to a memory region originally 

provided by one of the memory allocation functions and recycles it. The free symbol is an alias to 

__libc_free(), which is in turn a wrapper around the _int_free() function where the majority of 

dynamic memory recycling code resides. 

Malloc Hooks 
GLIBC provides hooks for some of malloc’s core functionality. Typical uses for these hooks include 

monitoring dynamic memory statistics or implementing a different memory allocator altogether. 

Because they remain writable for the duration of a program’s lifecycle, they are a viable target for 

heap exploits attempting to gain code execution. GLIBC provides the following hooks related to 

malloc: 

• __after_morecore_hook 

• __free_hook 

• __malloc_hook 

• __malloc_initialize_hook 

• __memalign_hook 

• __realloc_hook 

Some of these hooks are populated with initialisation values which are cleared after the first call to a 

function. For example __malloc_hook is populated with the address of the malloc_hook_ini() 

function during GLIBC initialisation, which zeroes __malloc_hook and calls ptmalloc_init(). 

static void* malloc_hook_ini (size_t sz, const void* caller) { 

 __malloc_hook = NULL; 
 ptmalloc_init(); 

 return __libc_malloc(sz); 

} 
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When a hook is zeroed, calls to its parent function go straight through to that function. When a hook 

is populated, execution is redirected to the address pointed to by the hook when the parent function 

is called. For example, the first lines of __libc_malloc() are as follows: 

void* (*hook) (size_t, const void*) = atomic_forced_read(__malloc_hook); 
if(__builtin_expect(hook != NULL, 0)) 
 return(*hook)(bytes, RETURN_ADDRESS(0)); 

Mitigations 
Historic exploit mitigations introduced into GLIBC malloc. 

Commit date Published 
in GLIBC 
version 

Author Description Diff 

19/08/2003 2.3.3 Ulrich 
Drepper 

Ensure chunks don't wrap around memory on 
free(). 

diff 

21/08/2004 2.3.4 Ulrich 
Drepper 

Safe unlinking checks. diff 

09/09/2004 2.3.4 Ulrich 
Drepper 

Check that the chunk being freed is not the top 
chunk. Check the next chunk on free is not 
beyond the bounds of the heap. Check that the 
next chunk has its prev_inuse bit set before 
free. 

diff 

19/11/2004 2.3.4 Ulrich 
Drepper 

Check next chunk’s size sanity on free(). diff 

20/11/2004 2.3.4 Ulrich 
Drepper 

Check chunk about to be returned from fastbin 
is the correct size. Check that the chunk about 
to be returned from the unsorted bin has a 
sane size. 

diff 

22/12/2004 2.3.4 Ulrich 
Drepper 

Ensure a chunk is aligned on free(). diff 

13/10/2005 2.4 Ulrich 
Drepper 

Check chunk is at least MINSIZE bytes on free(). diff 

30/04/2007 2.6 Ulrich 
Drepper 

Unsafe unlink checks for largebins. diff 

19/06/2009 2.11 Ulrich 
Drepper 

Check if bck->fd != victim when allocating from 
a smallbin. Check if fwd->bk != bck before 
adding a chunk to the unsorted bin whilst 
remaindering an allocation from a large bin. 
Check if fwd->bk != bck before adding a chunk 
to the unsorted bin whilst remaindering an 
allocation from a binmap search. Check if fwd-
>bk != bck when freeing a chunk directly into 
the unsorted bin. 

diff 

https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=8cc9e454dc1ad640639eab44d6c224f42b4f6c9c;hp=55e2cbc0cd3db1e539a1f5089ca1d0f8684aa67c;hb=5dfe677810a3550bc2cff4d4046261c7572fbae0;hpb=9a3a9dd8d9e03875f865a22de5296274cc18c10e
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=206be503a824bc1742211162120d6c7a150e0d6c;hp=6e6c1053b1a82d8836772569230f97b0ea043fea;hb=3e030bd5f9fa57f79a509565b5de6a1c0360d953;hpb=51ea6fc094544328c08c367bc40a3b830b8fe7e8
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=824b6cc3f40a09b33e01fabc203ccc36642279b2;hp=4db40514d615b1a94cad65da6ab1753717a705cf;hb=6bf4302e764e422656f4f7230619fe9ab481ae04;hpb=45ab54ce2db0751bfe1b30c044e1e6fffd1e017e
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=d6810be7f606ce9dad203a9454d66bcba7e63891;hp=57074108f1d147c380dde6e8ca125affb607db30;hb=893e609847a2f372970e349e0cede2e8529bea71;hpb=3defcff3991314ad57e9b63c37f5e6de9fd5e879
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=b62ffb57c0d859e1f3f89319a9894f37c598d2f7;hp=d6810be7f606ce9dad203a9454d66bcba7e63891;hb=6cce65407e2fc5015c69bb38741d6942b3e412c3;hpb=893e609847a2f372970e349e0cede2e8529bea71
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=e3ccbde7b5b84affbf6ff2387a5151310235f0a3;hp=a369001520395a1f7fd7b7411bba6c98e04d2391;hb=a334319f6530564d22e775935d9c91663623a1b4;hpb=0ecb606cb6cf65de1d9fc8a919bceb4be476c602
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=4ea35254bb973eda1811db668ca03ddae589e685;hp=a8bc76739f8c860acf4c14fa3156611caf320647;hb=bf58906631af8fe0d57625988b1d003cc09ef01d;hpb=04ec80e410b4efb0576a2ffd0d2f29ed1fdac451
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=8ae941c59703f4da69ef439c9c000527ec0835c3;hp=6427608a79f10f8f74cf17b9befc6e5641644831;hb=7ecfbd386a340b52b6491f47fcf37f236cc5eaf1;hpb=e53f0f51a62061e0c654d4b2f82d4c71b4d71932
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=516d401991123581c6ac336ae14b44a6d6d5f61f;hp=0b9facefd4e326a46ac4d013094f05db8decc5d0;hb=f6887a0d9a55f5c80c567d9cb153c1c6582410f9;hpb=d0a2af710654a038903dd4a300030670bfbeaa2d
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03/04/2010 2.12 Ulrich 
Drepper 

When freeing a chunk directly into a fastbin, 
check that the chunk at the top of the fastbin is 
the correct size for that bin. 

diff 

17/03/2017 2.26 DJ Delorie Size vs prev_size check in unlink macro. diff 

30/08/2017 2.27 Florian 
Weimer 

Don't backtrace on abort anymore. diff 

30/11/2017 2.27 Arjun Shankar Fix integer overflow when allocating from the 
tcache. 

diff 

12/01/2018 2.27 Istvan 
Kurucsai 

Fastbin size check in malloc_consolidate. diff 

14/04/2018 2.28 DJ Delorie Check if bck->fd != victim when removing a 
chunk from the unsorted bin during unsorted 
bin iteration. 

diff 

16/08/2018 2.29 Pochang 
Chen 

Check top chunk size field sanity in use_top. diff 

17/08/2018 2.29 Moritz Eckert Proper size vs prev_size check before unlink() 
in backward consolidation via free. Same check 
in malloc_consolidate(). 

diff 

17/08/2018 2.29 Istvan 
Kurucsai 

When iterating unsorted bin check: size sanity 
of next chunk on heap to removed chunk, next 
chunk on heap prev_size matches size of chunk 
being removed, check bck->fd != victim and 
victim->fd != unsorted_chunks (av) for chunk 
being removed, check prev_inuse is not set on 
next chunk on heap to chunk being removed. 

diff 

20/11/2018 2.29 DJ Delorie Tcache double-free check. diff 

26/11/2018 2.29 Florian 
Weimer 

Validate tc_idx before checking for tcache 
double-frees. 

diff 

14/03/2019 2.30 Adam Maris Check for largebin list corruption when sorting 
into a largebin. 

diff 

18/04/2019 2.30 Adhemerval 
Zanella 

Request sizes cannot exceed PTRDIFF_MAX 
(0x7fffffffffffffff) 

diff 

  

https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=558e8bab0ab3808ec9f5b569ca62863ef4651b27;hp=784919e4bd9e38783b77b25a79a3a7395eb2e9fe;hb=90a3055e8bdd9308eceeadc0b37278f324ec6b5d;hpb=991eda1ec17665ea0da247f8eabc6993d020ed8e
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=994a23248e258501979138f3b07785045a60e69f;hp=e29105c37211076679a44594e2cdfb501553c606;hb=17f487b7afa7cd6c316040f3e6c86dc96b2eec30;hpb=b170d2e7ab998180abbd24fdd6c03ecb4293d000
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=d290fde9d121abeef37f344884b85bc45ca3a6cc;hp=e3ff778113febdd0533aeea70f1a35f62259bcfd;hb=ec2c1fcefb200c6cb7e09553f3c6af8815013d83;hpb=9ce673b69e82578044958f66d93dcaddb23f6e95
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=0c9e0748b4c10988f6fe99ac2e5b21b8b7b603c3;hp=79f0e9eac7483b3fba19849a44029b5e8ba3bd33;hb=34697694e8a93b325b18f25f7dcded55d6baeaf6;hpb=18305fba5575a09063652014cfc483b898d8bdcd
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=f5aafd2c0511cd5a57174e12c2192e3fea3e0b7b;hp=48106f9bd455620cbaf1a30bcfbd095cb16791cc;hb=249a5895f120b13290a372a49bb4b499e749806f;hpb=1a51e46e4a87e1cd9528ac5e5656011636e4086b
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=96149549758dd424f5c08bed3b7ed1259d5d5664;hp=e229181c5e252b1fa1e2bf800ab2ed03706c652e;hb=bdc3009b8ff0effdbbfb05eb6b10966753cbf9b8;hpb=f9555d73121bd12f6fd50545868e6a33096b8164
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=9431108626cdc0b5c1972ee00126228c8dd7166f;hp=e247c77b7d4de26e0f2fbec16e352889bac3781b;hb=30a17d8c95fbfb15c52d1115803b63aaa73a285c;hpb=34f86d61687457aa57d40cf3c230ca8404d40e45
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=7c8bf8413c54c367031ca274c9bca497a45897f8;hp=9431108626cdc0b5c1972ee00126228c8dd7166f;hb=d6db68e66dff25d12c3bc5641b60cbd7fb6ab44f;hpb=30a17d8c95fbfb15c52d1115803b63aaa73a285c
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=47795601c87513912a73b14576e30bff2f50de55;hp=7c8bf8413c54c367031ca274c9bca497a45897f8;hb=b90ddd08f6dd688e651df9ee89ca3a69ff88cd0c;hpb=6413fcde4fe0272eee469aaf41c8bb1d6e6a270f
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=f730d7a2ee496d365bf3546298b9d19b8bddc0d0;hp=6d7a6a8cabb4edbf00881cb7503473a8ed4ec0b7;hb=bcdaad21d4635931d1bd3b54a7894276925d081d;hpb=5770c0ad1e0c784e817464ca2cf9436a58c9beb7
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=c9b2c6e320e5eaa3d91cde95aa61f289e407418e;hp=f730d7a2ee496d365bf3546298b9d19b8bddc0d0;hb=affec03b713c82c43a5b025dddc21bde3334f41e;hpb=8ae74eadb60eb36424e4605939cef5fc966724be
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=801ba1f499b566e677b763fc84f8ba86f4f7ccd0;hp=6e766d11bc85b6480fa5c9f2a76559f8acf9deb5;hb=5b06f538c5aee0389ed034f60d90a8884d6d54de;hpb=a0a0dc83173ce11ff45105fd32e5d14356cdfb9c
https://sourceware.org/git/?p=glibc.git;a=blobdiff;f=malloc/malloc.c;h=0e3d4dd5163f5fa8fb07b71fb7e318e7b10f5cfd;hp=801ba1f499b566e677b763fc84f8ba86f4f7ccd0;hb=9bf8e29ca136094f73f69f725f15c51facc97206;hpb=52faba65f84ee5a8d82ff813bcfa0ee5f4d480cf
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Malloc Flowchart 
Below is a simplified flowchart depicting the code paths malloc() can take. Blocks coloured yellow 

are only applicable to versions of GLIBC compiled with tcache support, purple blocks contain a series 

of operations which are depicted in their own flowcharts. The green blocks indicate a successful 

allocation and return from malloc(). Entry point is the top-left block. 

  

Figure 13: Malloc flowchart 
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Unsortedbin Flowchart 
Below is a flowchart depicting the code paths that an unsortedbin scan can take. Blocks coloured 

yellow are only applicable to versions of GLIBC compiled with tcache support, green blocks indicate a 

successful allocation and return from malloc(). If execution reaches the red block malloc() continues 

on from the unsortedbin scan, as shown in the malloc flowchart. Entry point is the top-left block. 

Note that the unsortedbin deals with tcache dumping differently to the fastbins & smallbins; exact-

fitting chunks are immediately stored in the tcache. Unless the target tcachebin is full, or the victim 

chunk is outside the tcache size range, a chunk is allocated from the target tcachebin once the 

unsortedbin is empty. 

  

Figure 14: Unsortedbin flowchart 
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Sysmalloc Flowchart 
Below is a flowchart showing the code paths that sysmalloc() can take. Blocks coloured green 

indicate a successful allocation and return from sysmalloc(). If execution reaches the red block, the 

ENOMEM error number is set and sysmalloc() returns 0. Entry point is the top-left block. 

  

Figure 15: Sysmalloc flowchart 
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Free Flowchart 
Below is a flowchart showing the code paths that free() can take. Blocks coloured green indicate a 

return path, yellow blocks are only applicable to versions of GLIBC compiled with tcache support. 

  

Figure 16: Free flowchart 
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Exploitation Techniques 
This section serves as an extension to the HeapLAB training course & VM, it is not meant as an 

exhaustive explanation of each heap exploitation technique. 

House of Force 

Overview 
Overwrite a top chunk size field with a large value, then request enough memory to bridge the gap 

between the top chunk and target data. Allocations made in this way can wrap around the VA space, 

allowing this technique to target memory at a lower address than the heap. 

Detail 
In GLIBC versions < 2.29, top chunk size fields are not subject to any integrity checks during 

allocations. If a top chunk size field is overwritten using e.g. an overflow and replaced with a large 

value, subsequent allocations from that top chunk can overlap in-use memory. Very large allocations 

from a corrupted top chunk can wrap around the VA space in GLIBC versions < 2.30. 

For example, a top chunk starts at address 0x405000 and target data residing at address 0x404000 in 

the program’s data section must be overwritten. Overwrite the top chunk size field using a bug, 

replacing it with the value 0xfffffffffffffff1. Next, calculate the number of bytes needed to move the 

top chunk to an address just before the target. The total is 0xffffffffffffffff - 0x405000 bytes to reach 

the end of the VA space, then 0x404000 - 0x20 more bytes to stop just short of the target address. 

After this request has been serviced from the top chunk, the next chunk to be serviced from it will 

overlap the target data. 

Further use 
If the target resides on the same heap as the corrupt top chunk, leaking a heap address is not 

required, the allocation can wrap around the VA space back onto the same heap to an address 

relative to the top chunk. 

The malloc hook is a viable target for this technique because passing arbitrarily large requests to 

malloc() is a prerequisite of the House of Force. Overwriting the malloc hook with the address of 

system(), then passing the address of a “/bin/sh” string to malloc masquerading as the request size 

becomes the equivalent of system(“/bin/sh”). 

Limitations 
GLIBC version 2.29 introduced a top chunk size field sanity check, which ensures that the top chunk 

size does not exceed its arena’s system_mem value. 

GLIBC version 2.30 introduced a maximum allocation size check, which limits the size of the gap the 

House of Force can bridge.  
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Fastbin Dup 

Overview 

Leverage a double-free bug to coerce malloc into returning the same chunk twice, without freeing it 

in between. This technique is typically capitalised upon by corrupting fastbin metadata to link a fake 

chunk into a fastbin. This fake chunk can be allocated, then program functionality could be used to 

read from or write to an arbitrary memory location. 

Detail 
The fastbin double-free check only ensures that a chunk being freed into a fastbin is not already the 

first chunk in that bin, if a different chunk of the same size is freed between the double-free then the 

check passes. 

For example, request chunks A & B, both of which are the same size and qualify for the fastbins 

when freed, then free chunk A. If chunk A is freed again immediately, the fastbin double-free check 

will fail because chunk A is already the first chunk in that fastbin. Instead, free chunk B, then free 

chunk A again. This way chunk B is the first chunk in that fastbin when chunk A is freed for the 

second time. Now request three chunks of the same size as A & B, malloc will return chunk A, then 

chunk B, then chunk A again. 

This may yield an opportunity to read from or write to a chunk that is allocated for another purpose. 

Alternatively, it could be used to tamper with fastbin metadata, specifically the forward pointer (fd) 

of the double-freed chunk. This may allow a fake chunk to be linked into the fastbin which can be 

allocated, then used to read from or write to an arbitrary location. Fake chunks allocated in this way 

must pass a size field check which ensures their size field value matches the chunk size of the fastbin 

they are being allocated from. 

Watch out for incompatible flags in fake size fields, a set NON_MAIN_ARENA flag with a clear 

CHUNK_IS_MMAPPED flag can cause a segfault as malloc attempts to locate a non-existent arena. 

Further use 
The malloc hook is a good target for this technique, the 3 most-significant bytes of the 

_IO_wide_data_0 vtable pointer can be used in conjunction with part of the succeeding padding 

quadword to form a reliable 0x7f size field. This works because allocations are subject neither to 

alignment checks nor to flag corruption checks. 

Fastbin metadata may instead be tampered with using an overflow or write-after-free bug. 

Limitations 
The fastbin size field check during allocation limits candidates for fake chunks. 

  



HeapLAB Max Kamper 

 
21 

Unsafe Unlink 

Overview 

Force the unlink macro to process designer-controlled fd/bk pointers, leading to a reflected write. 

Detail 
During chunk consolidation the chunk already linked into a free list is unlinked from that list via the 

unlink macro. The unlinking process is a reflected write using the chunk’s forward (fd) and backward 

(bk) pointers; the victim bk is copied over the bk of the chunk pointed to by the victim fd and the 

victim fd is written over the fd of the chunk pointed to by the victim bk. If a chunk with designer-

controlled fd & bk pointers is unlinked, this write can be manipulated. 

One way to achieve this is via an overflow into a chunk’s size field, which is used to clear its 

prev_inuse bit. When the chunk with the clear prev_inuse bit is freed, malloc will attempt to 

consolidate it backwards. A designer-supplied prev_size field can aim this consolidation attempt at 

an allocated chunk where counterfeit fd & bk pointers reside. 

For example, request chunks A & B, chunk A overflows into chunk B’s size field and chunk B is 

outside fastbin size range. Prepare counterfeit fd & bk pointers within chunk A, the fd points at the 

free hook – 0x18 and the bk points to shellcode prepared elsewhere. Prepare a prev_size field for 

chunk B that would cause a backward consolidation attempt to operate on the counterfeit fd & bk. 

Leverage the overflow to clear chunk B’s prev_inuse bit. 

When chunk B is freed the clear prev_inuse bit in its size field causes malloc to read chunk B’s 

prev_size field and unlink the chunk that many bytes behind it. When the unlink macro operates on 

the counterfeit fd & bk pointers, it writes the address of the shellcode to the free hook and the 

address of the free hook – 0x18 into the 3rd quadword of the shellcode. The shellcode can use a 

jump instruction to skip the bytes corrupted by the fd. 

Triggering a call to free() executes the shellcode. 

Further use 
It is possible to use a prev_size field of 0 and craft the counterfeit fd & bk pointers within chunk B in 

the above example. The same technique can be applied to forward consolidation but requires 

stricter heap control. 

Limitations 
This technique can only be leveraged against GLIBC versions <= 2.3.3, safe unlinking was introduced 

in GLIBC version 2.3.4 in 2004 and GLIBC versions that old are not common. This technique was 

originally leveraged against platforms without NX/DEP and is described as such here. In 2003 AMD 

introduced hardware NX support to their consumer desktop processors, followed by Intel in 2004, 

systems without this protection are not common.  
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Safe Unlink 

Overview 

The modern equivalent of the Unsafe Unlink technique. Force the unlink macro to process designer-

controlled fd/bk pointers, leading to a reflected write. The safe unlinking checks are satisfied by 

aiming the reflected write at a pointer to an in-use chunk. Program functionality may then be used 

to overwrite this pointer again, which may in turn be used to read from or write to an arbitrary 

address. 

Detail 
The Safe Unlink technique is similar to the Unsafe Unlink, but accounts for safe unlinking checks 

introduced in GLIBC version 2.3.4. The safe unlinking checks ensure that a chunk is part of a doubly 

linked list before unlinking it. The checks pass if the bk of the chunk pointed to by the victim chunk’s 

fd points back to the victim chunk, and the fd of the chunk pointed to by the victim’s bk also points 

back to the victim chunk. 

Forge a fake chunk starting at the first quadword of a legitimate chunk’s user data, point its fd & bk 

0x18 and 0x10 bytes respectively before a user data pointer to the chunk in which they reside. Craft 

a prev_size field for the succeeding chunk that is 0x10 bytes less than the actual size of the previous 

chunk. Leverage an overflow bug to clear the succeeding chunk’s prev_inuse bit, when this chunk is 

freed malloc will attempt to consolidate it backwards with the fake chunk. 

The bk of the chunk pointed to by the fake chunk’s fd points back to the fake chunk, and the fd of 

the chunk pointed to by the fake chunk’s bk also points back to the fake chunk, satisfying the safe 

unlinking checks. The result of the unlinking process is that the pointer to the fake chunk (a pointer 

to a legitimate chunk’s user data) is overwritten with the address of itself minus 0x18. 

If this pointer is used to write data, it may be used to overwrite itself a second time with the address 

of sensitive data, then be used to tamper with that data. 

Further use 
By forging a very large prev_size field the consolidation attempt may wrap around the VA space and 

operate on a fake chunk within the freed chunk. 

Limitations 
A size vs prev_size check introduced in GLIBC version 2.26 requires the fake chunk’s size field to pass 

a simple check; the value at the fake chunk + size field must equal the size field, setting the fake size 

field to 8 will always pass this check. A 2nd size vs prev_size check introduced in GLIBC version 2.29 

requires the fake chunk’s size field to match the forged prev_size field.  
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Unsortedbin Attack 

Overview 

The unsortedbin attack yields a primitive that seems benign but is used to great effect when coupled 

with other heap exploitation techniques; it writes the address of an arena’s unsortedbin to an 

arbitrary memory location. 

Detail 
When a chunk is allocated or sorted from an unsortedbin, it is subject to what malloc refers to as a 

“partial unlink”. This is the process of removing a chunk from the tail end of a doubly linked, circular 

list, and one part of this process involves writing the address of the unsortedbin over the fd pointer 

of the chunk pointed to by the victim chunk’s bk. 

Tampering with the bk pointer of a chunk linked into an unsortedbin via an overflow or write-after-

free bug, then allocating the chunk from the unsortedbin results in the address of the unsortedbin 

being written to the designer-supplied address + 0x10 bytes. 

Further use 
Novel uses of the unsortedbin attack include leaking libc by, for example, writing the main arena’s 

unsortedbin address into an output buffer. It can be used to disable the libio vtable integrity check in 

GLIBC versions 2.24 – 2.26 by targeting the _dl_open_hook symbol. It can also be used to corrupt 

the global_max_fast variable to leverage a House of Prime primitive. The House of Orange targets 

the _IO_list_all symbol with an unsortedbin attack as part of a file stream exploitation attempt. 

Limitations 
Various unsortedbin integrity checks were introduced in GLIBC version 2.29, one of which ensures 

the chunk at victim.bk->fd is the victim chunk, mitigating the unsortedbin attack.  
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House of Orange 

Overview 

The House of Orange leverages an overflow into the main arena’s top chunk to drop a shell, it makes 

use of file stream exploitation to gain code execution and involves the novel application of an 

unsortedbin attack. 

Detail 
The House of Orange can be broken down into 3 phases: top chunk extension, the unsortedbin 

attack and file stream exploitation. The 1st phase takes advantage of how the main arena deals with 

top chunk extension. When the main arena’s top chunk is exhausted, more memory is requested 

from the kernel via the brk() syscall, if this memory is not contiguous to the top chunk it is marked as 

the top chunk and the old top chunk is freed. The House of Orange takes advantage of this by 

leveraging an overflow into the top chunk to write a small, page-aligned value over the top chunk’s 

size field, then making a request too large to be serviced by the shrunken top chunk. This has the 

effect of generating a free chunk linked into the unsortedbin in the path of the overflow. 

The 2nd phase involves leveraging the overflow bug a 2nd time to overwrite the bk pointer belonging 

to the old top chunk, which resides in the main arena’s unsortedbin. This is used to aim an 

unsortedbin attack at the _IO_list_all pointer, which will be used by the _IO_flush_all_lockp() 

function to flush all open file streams. 

While overwriting the old top chunk’s bk, a fake file stream is crafted on the heap via the overflow 

such that its _flags field overlaps the old top chunk’s prev_size field. The fake file stream’s _mode 

field is set to <= 0, and its _IO_write_ptr field is set to a larger value than its _IO_write_base field. 

The fake file stream’s vtable pointer is populated with the address of a fake vtable, at any location 

the designer can create one, with the address of system() overlapping the vtable’s __overflow entry. 

The string “/bin/sh\0” is written into the fake file stream’s _flags field and the old top chunk’s size 

field (which overlaps the _IO_read_ptr field) is set to 0x61. 

Figure 17 above shows an example fake file stream, with fields that must be set in yellow and the 

remaining file stream members in purple. 

Figure 17: Fake file stream example 
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Next, a chunk with size other than 0x60 is requested. The old top chunk is sorted into the 0x60 

smallbin during unsortedbin scanning, triggering the unsortedbin attack which overwrites the 

_IO_list_all pointer with the address of the unsortedbin. The unsortedbin scan continues and the 

“chunk” overlapping the _IO_list_all pointer fails a size sanity check, triggering the abort() function. 

The abort() function in turn flushes all file streams via _IO_flush_all_lockp(), which dereferences 

_IO_list_all to find the first file stream. The fake file stream overlapping the main arena isn’t flushed 

and its _chain pointer overlapping the 0x60 smallbin bk is followed to the fake file stream on the 

heap. The _mode, _IO_write_base & _IO_write_ptr fields of the fake file stream ensure that the 

__overflow entry in the fake file stream’s vtable is called, with the address of the fake file stream as 

the first argument. 

This results in a call to system(“/bin/sh”). 

Further use 
Phase 1 can be skipped if the designer can free chunks and leverage an unsortedbin attack by other 

means. 

In the case that only 0x60-sized chunks can be requested in phase 3, setting the old top chunk size to 

0x69 can also work because this identifies the chunk as non-exact-fitting, but it is still sorted into the 

0x60 smallbin. Alternatively, a size field of 0xb1 will also suffice if the 0x60 smallbin is empty, which 

results in it being followed back into the main arena a second time when treated as a _chain pointer, 

where the 0xb0 smallbin now overlaps this file stream’s _chain pointer. 

Limitations 
When determining if the fake file stream overlapping the main arena should be flushed, the 0xb0 

smallbin's fd becomes fp->_wide_data->_IO_write_ptr, and the 0xa0 smallbin's bk becomes fp-

>_wide_data->_IO_write_base. When these bins are empty this will always result in fp->_wide_data-

>_IO_write_base being smaller than fp->_wide_data->_IO_write_ptr, which will trigger a call to the 

file stream's __overflow() member function if fp->_mode > 0. When this happens, fp->_vtable 

overlaps the bk of the 0xd0 smallbin which results in the __overflow() vtable entry also overlapping 

the 0xd0 smallbin's bk in an empty main arena. If the __overflow() member of vtable is called, this 

results in a segfault. 

If the fp->_mode field of the file stream in the main arena, which overlaps the 0xc0 smallbin's fd, is 

greater than zero then the __overflow() vtable entry is called and the program segfaults trying to 

execute data marked as non-executable. Thus, this technique will only work when the low order 

dword of the 0xc0 smallbin fd can be interpreted as a negative integer. The bit that determines this 

state is subject to ASLR, therefore this technique will only succeed approximately 50% of the time, 

depending on the libc load address.  
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House of Spirit 

Overview 

Pass an arbitrary pointer to the free() function, linking a fake chunk into a bin which can be allocated 

later. 

Detail 
The House of Spirit is the only technique that does not rely on one of the conventional heap-related 

bugs, instead it takes advantage of a scenario that allows a designer to corrupt a pointer that is 

subsequently passed to free(). 

By passing a pointer to a fake chunk to free(), the fake chunk can be allocated and used to overwrite 

sensitive data. The fake chunk must have an appropriate size field and in the case of a fast chunk, 

must have a succeeding size field that satisfies size sanity checks, meaning that a designer must 

control at least 2 quadwords that straddle the target data. 

In the case of a small chunk, there must be 2 trailing size fields to ensure forward consolidation is 

not attempted, fencepost chunks will work. Because of this a designer must control at least 3 

quadwords that straddle the target data. 

Further use 
When combined with a heap leak, the House of Spirit can be used to coerce a double-free which can 

provide a more powerful primitive. 

Limitations 
if an arena’s contiguity flag is set, fake small chunks must reside at a lower address than their 

thread’s heap, this does not apply to fake fast chunks. Fake chunks must pass an alignment check, 

which not only ensures that they are 16-byte aligned but mitigates the presence of a set 4th-least-

significant bit in the size field. 

Fake chunks must avoid having set NON_MAIN_ARENA and IS_MMAPED bits, in the former case the 

free() function will search for a non-existent arena and will most likely segfault whilst doing so, and 

in the latter case the fake chunk is unmapped rather than freed.  
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House of Lore 

Overview 

Link a fake chunk into the unsortedbin, smallbins or largebins by tampering with inline malloc 

metadata. 

Detail 
Linking a fake chunk into an unsortedbin is equivalent to aiming an unsortedbin attack at a fake 

chunk by overwriting the unsorted chunk’s bk with the address of the fake chunk. The fake chunk 

must have a bk which points to a writable address. The fake chunk can be allocated directly from the 

unsortedbin, although its size field must match the request size and differ from the chunk with the 

corrupt bk. 

Linking a fake chunk into a smallbin requires overwriting the bk of a chunk linked into a smallbin with 

the address of the fake chunk and ensuring the victim->bk->fd == victim check passes by writing the 

address of the victim small chunk into the fake chunk’s fd pointer before the small chunk is 

allocated. Once the small chunk is allocated, the fake chunk must pass the victim->bk->fd == victim 

check too, this can be achieved by pointing both its fd & bk at itself. In scenarios where the fake 

chunk cannot be changed after the victim small chunk is allocated, it’s possible to use a 2nd fake 

chunk, although only 1 quadword is required to hold a fake fd. Pointing this 2nd fake chunk’s fd at the 

primary fake chunk, and the primary fake chunk’s bk at the 2nd fake chunk will satisfy the check. The 

size of the fake chunk is irrelevant as it is not checked. 

The easiest way to link a fake chunk into a largebin involves overwriting a skip chunk’s fd with the 

address of a fake chunk and preparing the fake chunk’s fd & bk to satisfy the safe unlinking checks. 

The fake chunk must have the same size field as the skip chunk and the skip chunk must have 

another same-sized or smaller chunk in the same bin, as malloc will not check the skip chunk’s fd for 

a viable chunk if the skip chunk is the last in the bin. The fake chunk’s fd & bk can be prepared to 

satisfy the safe unlinking checks by pointing them both at the fake chunk. 

Limitations 
The amount and precise location of controlled memory required to construct fake small and large 

chunks for the House of Lore can make it difficult to implement against these bins.  
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House of Einherjar 

Overview 

Clear a chunk’s prev_inuse bit and consolidate it backwards with a fake chunk or an existing free 

chunk, creating overlapping chunks. 

Detail 
The House of Einherjar was originally presented as a single null-byte overflow technique, but this is 

not its most realistic application. It assumes an overflow that can clear a victim chunk’s prev_inuse 

bit whilst having control of the victim chunk’s prev_size field. 

The victim’s prev_size field is populated such that when the victim chunk is freed it consolidates 

backwards with a fake chunk on the heap or elsewhere. In this case, arbitrary allocations can be 

made from the fake chunk which could be used to read from or write to sensitive data. 

Further use 
It is also possible to consolidate with legitimate free chunks on the heap, creating overlapping 

chunks which can be used to build a stronger primitive. 

Limitations 
The size vs prev_size check introduced in GLIBC version 2.26 requires a designer to set an 

appropriate size field in their fake chunk.  
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House of Rabbit 

Overview 

Forge a House of Force-like primitive by linking a fake chunk into the largest largebin and setting its 

size field to a very large value. 

Detail 
Leverage a heap bug to link a fake chunk into a fastbin, the fake chunk consists of 2 size fields: one 

belongs to the fake chunk itself and the other belongs to the succeeding chunk’s size field. However, 

the succeeding chunk’s size field is placed 0x10 bytes before the fake chunk’s size field. The fake 

chunk wraps around the VA space with a size field of 0xfffffffffffffff1 and the succeeding chunk’s size 

is set to 0x11 (a so-called fencepost chunk). This is the smallest memory footprint a fake chunk can 

assume whilst satisfying fastbin next size checks and avoiding consolidation attempts. 

Once the fake chunk is linked into a fastbin it is consolidated into the unsortedbin via 

malloc_consolidate(). malloc_consolidate() cannot be triggered via malloc() because this results in 

the fake chunk being sorted which triggers an abort() call when it fails a size sanity check. Instead the 

fake chunk is sorted by freeing a chunk that exceeds the FASTBIN_CONSOLIDATION_THRESHOLD 

(0x10000 by default), this can be achieved by freeing a normal chunk that borders the top chunk 

because _int_free() considers the entire consolidated space to be the size of the freed chunk. 

Modify the fake chunk size so that it can be sorted into the largest largebin (bin[126]), malloc only 

searches this bin for very large requests. To qualify for this bin the fake chunk size must be 0x80001 

or larger. Sort the fake chunk into bin[126] by requesting a larger chunk. If the arena’s system_mem 

variable is less than 0x80000, which it will be under default conditions when this heap has not been 

extended, it is required to artificially increase system_mem by requesting a large chunk, freeing it 

and requesting it again. 

Now that the fake chunk is linked into the largest largebin, it is safe to return its size to 

0xfffffffffffffff1. Note that such a large size may not be appropriate when attempting to overwrite 

stack variables as the fake chunk size may be larger than av->system_mem after the allocation. This 

will fail a size sanity check during subsequent allocation from the unsortedbin. 

This provides a House of Force-like primitive where a large request can be made from the fake chunk 

that spans the gap between the fake chunk and target memory. 

Further use 
An alternative to using a large fake chunk that wraps around the VA space during the initial link into 

a fastbin is to use a fake fast chunk with trailing fencepost chunks. This requires more controlled 

memory but bypasses the size sanity checks in malloc_consolidate() as of GLIBC 2.27. 

Limitations 
The size vs prev_size check introduced in GLIBC 2.26 means a designer must manually populate the 

prev_size field of the fake fencepost chunk.  
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Poison Null Byte 

Overview 

Leverage a single null-byte overflow to create overlapping chunks without having to provide a fake 

prev_size field. 

Detail 
This technique focuses on a single null-byte overflow in a realistic scenario of incorrect null-

termination of a string. In such cases it is unusual to be able to provide a fake prev_size field since 

the quadword before the succeeding chunk’s size field is most like holding a string, which is hard to 

coerce into a sensible prev_size field without using null bytes. 

The overflow must be directed at a free chunk with a size field of 0x110 or larger, when this happens 

the least-significant byte of the size field is cleared, scrubbing 0x10 or more bytes from the affected 

chunk’s size from malloc’s perspective. When the victim chunk is allocated again, the succeeding 

prev_size field isn’t updated, this can be leveraged as follows: 

Request 4 chunks, A through D: chunk A is used to overflow into chunk B, which is a 0x110 or larger 

sized chunk, chunk C is normal sized. Chunk D is used to avoid consolidation with the top chunk 

which is not vital but can make practicing the technique clearer. Free chunk B into its arena’s 

unsortedbin and trigger the single null-byte overflow into chunk B, clearing the least-significant byte 

of its size field. 

Request 2 chunks that will be allocated in the space left by chunk B, designated chunks B1 & B2, 

chunk B1 must be normal-sized. Free chunk B1, then chunk C. Chunk C is consolidated backwards 

with chunk B1, overlapping B2, because its prev_size field has not been updated since chunk B was 

freed. Request memory from the chunk overlapping the still-allocated chunk B2. 

Further use 
In GLIBC versions >= 2.26 the size vs prev_size check in the unlink macro/function must be satisfied 

when chunk B is unlinked during remaindering. 

Limitations 
In GLIBC versions >= 2.29 the size vs prev_size check before the unlink function fails when chunk C is 

freed because chunk B1’s size field is incorrect and can’t be tampered with.  
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House of Corrosion 

Overview 

The House of Corrosion leverages a small write-after-free to drop a shell against position 

independent binaries that don’t leak any addresses. 

Detail 
The House of Corrosion makes use of a House of Prime primitive in conjunction with a write-after-

free bug to drop a shell via file stream exploitation. The write-after-free bug in the example is of 

varied length, meaning that a designer may overwrite one or more bytes of free metadata as they 

choose. This primitive can also be coerced by lining up the same write-after-free with different fields 

of free metadata, or by writing to different fields of the freed object. The technique is leveraged 

against GLIBC version 2.27, but a different approach using the same tools is effective against GLIBC 

version 2.29. 

Using the write-after-free bug to execute an unsortedbin attack against the global_max_fast variable 

results in a House of Prime primitive in which freeing large chunks writes their address to an 

arbitrary location at an offset from the heap’s arena’s fastbins. In the case the heap belongs to the 

main arena, this primitive can be used to tamper with the libc writable segment. The unsortedbin 

attack is made possible by overwriting the 2 least-significant bytes of an unsorted chunk’s bk pointer 

with the write-after-free bug, doing so involves guessing 4 bits of libc load address entropy. 

The House of Prime primitive is improved upon by combining it with the write-after-free bug to 

tamper with memory in a more controlled manner. Once a large chunk has been freed after 

tampering with the global_max_fast variable, the value at the target address is written into the first 

quadword of the free chunk’s user data as a fastbin fd pointer. Using the write-after-free to tamper 

with this value then requesting the same sized chunk will write the tampered value back into its 

original location in memory. This allows a designer to modify the least-significant bytes of an address 

in the libc writable segment or replace a value entirely. 

One further adjustment can be made to provide a primitive which can transplant values between 

writable memory locations. Changing the size of a chunk between freeing and allocating it allows a 

value to be read onto the heap from one address, then written to a second address after being 

changed. This requires a designer to emulate a double-free bug using their write-after-free, which is 

achieved by requesting 2 nearby chunks, freeing them, then modifying the least-significant byte of 

the chunk’s fd that points to the other chunk to point back to itself instead. When this victim chunk 

is allocated, a pointer to it remains in the fastbin slot overlapping the transplant destination. Now 

the victim chunk size can be changed via a write-after-free aligned with its size field, then it is freed 

again to copy the transplant source data into its fd on the heap. At this point the designer can 

modify the data with the write-after-free. Lastly, the victim chunk size is changed again, and the 

chunk allocated, writing the target data to its destination fastbin slot. 

To ensure the above primitive is successful a designer must write “safety” values to the heap where 

the fastbin next size checks are applied against the victim chunk. This can be done by requesting 

large chunks to write the top chunk size field into the appropriate location beforehand. 

These primitives are combined into a file stream exploit by tampering with various stderr fields then 

triggering a failed assert. The libio vtable integrity check is bypassed by modifying the stderr vtable 

pointer such that a function that uses a function pointer is called when the assert fails. The location 
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of this function pointer is overwritten with the address of a call rax gadget, at a point when the rax 

register contains a designer-controlled offset into the libc DSO. 

Further use 
The House of Corrosion can be leveraged against GLIBC version 2.29 by disabling the libio vtable 

integrity check entirely. This requires using the House of Corrosion primitives to tamper with the libc 

linkmap in such a way that the check interprets the libc DSO as being in a different linker namespace. 

Limitations 
The House of Corrosion uses gadgets in the libc DSO, therefore a designer must develop their exploit 

on a GLIBC build-specific basis.  
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Tcache Dup 

Overview 

Leverage a double-free bug to coerce malloc into returning the same chunk twice, without freeing it 

in between. This technique is typically capitalised upon by corrupting tcache metadata to link a fake 

chunk into a tcachebin. This fake chunk can be allocated, then program functionality could be used 

to read from or write to an arbitrary memory location. 

Detail 
The Tcache Dup technique operates in a similar manner to the Fastbin Dup, the primary difference 

being that in GLIBC versions < 2.29 there is no tcache double-free mitigation. The Tcache Dup is a 

very powerful primitive because there is no chunk size integrity check on allocations from a 

tcachebin, making it very easy to overlap a fake tcache chunk with any memory address. 

Further use 
In GLIBC version 2.29 a tcache double-free check was introduced: when a chunk is linked into a 

tcachebin, the address of that thread’s tcache is written into the slot usually reserved for a free 

chunk’s bk pointer, which is relabelled as a “key” field. When chunks are freed their key field is 

checked and if it matches the address of the tcache then the appropriate tcachebin is searched for 

the freed chunk. If the chunk is found to be already in the tcache then abort() is called. 

This check can be bypassed by filling the target tcachebin to free a victim chunk into the same sized 

fastbin, emptying the tcachebin then freeing the victim chunk a 2nd time. Next, the victim chunk is 

allocated from the tcachebin at which point a designer can tamper with its fastbin fd pointer. When 

the victim chunk is allocated from its fastbin, the remaining chunks in the same fastbin are dumped 

into the tcache, including the fake chunk, tcache dumping does not include a double-free check. 

Note that the fake chunk’s fd must be null for this to succeed. 

Since the tcache itself resides on the heap it can be subject to corruption after a heap leak.  
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Appendix A: Quick Reference 

Pwndbg 

Arenas 

Show information on all arenas: 

pwndbg> arenas 

Show information on a specific arena (defaults to main_arena): 

pwndbg> arena [arena address] 

Bins 

Show information on all bins within an arena (defaults to main_arena and current thread): 

pwndbg> bins [arena address] [tcache address] 

Show an arena’s fastbins contents (defaults to main_arena): 

pwndbg> fastbins [arena address] 

Show an arena’s smallbins contents (defaults to main_arena): 

pwndbg> smallbins [arena address] 

Show an arena’s largebins contents (defaults to main_arena): 

pwndbg> largebins [arena address] 

Show an arena’s unsortedbin contents (defaults to main_arena): 

pwndbg> unsortedbin [arena address] 

Show a thread’s tcachebins contents (defaults to the current thread): 

pwndbg> tcachebins [tcache address] 

Chunks 

Show information about chunks on a heap (defaults to the main_arena heap): 

pwndbg> heap [heap address] 

Show information about an arena’s top chunk (defaults to the main_arena): 

pwndbg> top_chunk [arena address] 

Show information about a single chunk: 

pwndbg> malloc_chunk [chunk address] 

Visualize a heap (defaults to the main_arena heap): 

pwndbg> vis_heap_chunks [count] [heap address] 

Miscellaneous 

Show information on a thread cache (defaults to the current thread): 

pwndbg> tcache [tcache address] 

Show the mp_ struct members: 

pwndbg> mp 
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Pwntools 
Where elf is an ELF object representing the binary, libc is an ELF object representing GLIBC and 

io is the process object. 

Symbols 

To access the “main” symbol of the binary: 

elf.sym.main 

To access the “system” symbol of GLIBC: 

libc.sym.system 

Packing 

Pack a 64-bit value into a string: 

p64(libc.sym.main_arena) 

Pack a 32-bit value into a string: 

p32(0xdeadbeef) 

Pack an 8-bit value into a string: 

p8(0) 

Unpack an 8-character string into an integer: 

u64(“\xef\xbe\xad\xde\xff\x7f\x00\x00) 

Interacting 

To interact with the binary manually: 

io.interactive() 

One-Gadget 

Search for & print any one-gadgets in the GLIBC binary that <target program> was linked against: 

$ one_gadget $(ldd <target program> | grep libc.so | cut -d’ ’ -f3) 


