
Analyzing Performance of Booth’s Algorithm and
Modified Booth’s Algorithm

Brett Weiland
April 12, 2024

Abstract
In this paper, the performance of Booth’s Algorithm is compared to modified

Booth’s Algorithm. Eachmultiplier is simulated in Python, and performance is ob-
served by counting the number of add and subtract operations for various inputs.
Results are analyzed and discussed to highlight the potential tradeoffs to consider
when deciding how hardware multiplication is implimented.

Introduction
Multiplication is among the most time consuming mathematical operations for pro-
cessors. In many applications, the time it takes to multiply dramatically influences the
speed of the program. Applications of digital signal processing (such as audio mod-
ification and image processing) require constant multiply and accumulate operations
for functions such as fast fourier transformations and convolutions. Other applica-
tions are heavily dependent on multiplying large matrices, such as machine learning,
3D graphics and data analysis. In such scenarios, the speed of multiplication is vital.
Consequently, mostmodern processors implement hardwaremultiplication. However,
not all multiplication circuits are equal; there is often a stark contrast between perfor-
mance and hardware complexity. To further complicate things, multiplication circuits
perform differently depending on what numbers are being multiplied.

Algorithm Description and Simulation
Booth’s algorithim computes the product of two signed numbers in two’s compliment
format. To avoid overflow, the result is placed into a register two times the size of the
operands (or two registers the size of a single operand). Additionally, the algorithim
must work with a space that is exended one bit more then the result. For the purpose
of brevity, the result register and extra bit will be refered to as the workspace, as the
algorithim will use this space for its computations. First, the multiplier is placed into
the workspace and shifted left by 1. From there, an operation is performed based off
the last two bits, as shown by the following table:

Bit 1 Bit 0 Action
0 0 None
0 1 Add
1 0 Subtract
1 1 None

1



After all iterations are complete, the result is arithmaticlly shifted once to the left,
and the process repeats for the number of bits in an operand.

Modified booth’s algorithim functions similar to Booth’s algorithim, but checks the
last three bits instead. As such, there are a larger selection of actions for each iteration:

Bit 2 Bit 1 Bit 0 Action
0 0 0 None
0 0 1 Add
0 1 0 Add
0 1 1 Add ×2
1 0 0 Sub ×2
1 0 1 Sub
1 1 0 Sub
1 1 1 None

Because some operations require multiplying the multiplicand by 2, an extra bit is
added to the most significant side of the workspace to avoid overflow. After each itera-
tion, the result is arithmaticlly shifted right twice. The number of iterations is only half
of the length of the operands. After all iterations, the workspace is shifted right once,
and the second most significant bit is set to the first most significant bit as the result
register does not include the extra bit.
The purpose of this paper is to analyze and compare the peformance of these two al-
gorithms for various operand lengths and values. As such, all arithmatic bitwise oper-
ations had to account for the length of operand sizes. Take for example, the arithmatic
shift right functions:

put phseudo code here

Additionally, after each iteration, the bits more significant then the workspace length
had to be erased (the bitwise functions purposefully do not account for this).

2



Results

4 5 6 7 8 9 10 11 12

Length of Operands

0

2

4

6

8

10

12

N
um

be
ro

fA
dd

iti
on

sa
nd

Su
bt
ra
ct
io
ns

Operations vs Operand Length

booths algorithim
modified booths algorithim

3



4 5 6 7 8 9 10 11 12

Operand Length

2

4

6

8

10

12

N
um

be
ro

fi
te
ra
tio

ns

booths algorithim
modified booths algorithim

multiplicand multiplier length booth modified booth
0b1110 0b1111 4 1 1
0b101 0b0 4 0 0
0b111111 0b111111 6 1 1
0b101110 0b110111 6 3 3
0b111011 0b100011 6 3 3
0b11111 0b1010101 8 8 4
0b11010111 0b1010101 8 8 4
0b1010101 0b11010111 8 5 4
0b1110111 0b110011 8 4 4
0b0 0b1110111 8 4 4
0b101010101 0b101010101 10 10 5
0b1100111011 0b1001110000 10 3 3
0b1001101110 0b101111010 10 6 4
0b10101010101 0b10101010101 12 12 6
0b1111100111 0b0 12 0 0
0b101010101010 0b101010101010 12 11 6
0b111001110000 0b11111111 12 2 2

4



multiplicand multiplier result (bin) result (hex)
0b1110 0b1111 0b10 0x2
0b101 0b0 0b0 0x0
0b111111 0b111111 0b1 0x1
0b101110 0b110111 0b10100010 0xa2
0b111011 0b100011 0b10010001 0x91
0b11111 0b1010101 0b101001001011 0xa4b
0b11010111 0b1010101 0b1111001001100011 0xf263
0b1010101 0b11010111 0b1111001001100011 0xf263
0b1110111 0b110011 0b1011110110101 0x17b5
0b0 0b1110111 0b0 0x0
0b101010101 0b101010101 0b11100011000111001 0x1c639
0b1100111011 0b1001110000 0b10011001111010000 0x133d0
0b1001101110 0b101111010 0b11011010111001101100 0xdae6c
0b10101010101 0b10101010101 0b111000110111000111001 0x1c6e39
0b1111100111 0b0 0b0 0x0
0b101010101010 0b101010101010 0b111000111100011100100 0x1c78e4
0b111001110000 0b11111111 0b111111100111000110010000 0xfe7190

Analysis

Conclusion

5


