
Analyzing Performance of Booth’s Algorithm and
Modified Booth’s Algorithm

Brett Weiland

April 12, 2024

Abstract

In this paper, the performance of Booth’s Algorithm is compared to modified
Booth’s Algorithm. Eachmultiplier is simulated in Python, and performance is ob-
served by counting the number of add and subtract operations for inputs of various
lengths. Results are analyzed and discussed to highlight the potential tradeoffs one
should consider when deciding what multiplier is to be used.

Introduction
Multiplication is among the most time consuming mathematical operations for pro-
cessors. In many applications, the time it takes to multiply dramatically influences the
speed of the program. Applications of digital signal processing (such as audio mod-
ification and image processing) require constant multiply and accumulate operations
for functions such as fast fourier transformations and convolutions. Other applications
are heavily dependent on multiplying large matrices, such as machine learning, 3D
graphics and data analysis. In such scenarios, the speed of multiplication is vital. Con-
sequently, most modern processors implement hardware multiplication. However, not
all hardware multiplication schemes are equal; there is often a stark contrast between
performance and hardware complexity. To further complicate things, multiplication
circuits perform differently depending on what numbers are being multiplied.

Algorithm Description
Booth’s algorithim computes the product of two signed numbers in two’s compliment
format. To avoid overflow, the result is placed into a register two times the size of the
operands (or two registers the size of a single operand). Additionally, the algorithim
must work with a space that is exended one bit more then the result. For the purpose
of brevity, the result register and extra bit will be refered to as the workspace, as the
algorithim uses this space for its computations. First, the multiplier is placed into the
workspace and shifted left by 1. From there, the multiplier is used to either add or
subtract from the upper half of the workspace. The specific action is dependent on the
last two bits of the workspace.

1

Bit 1 Bit 0 Action
0 0 None
0 1 Add
1 0 Subtract
1 1 None

After all iterations are complete, the result is arithmaticlly shifted once to the left,
and the process repeats for the number of bits in an operand.

Modified booth’s algorithim functions similar to Booth’s algorithim, but checks the
last three bits instead. As such, there are a larger selection of actions for each iteration:

Bit 2 Bit 1 Bit 0 Action
0 0 0 None
0 0 1 Add
0 1 0 Add
0 1 1 Add ×2
1 0 0 Sub ×2
1 0 1 Sub
1 1 0 Sub
1 1 1 None

Because some operations require multiplying the multiplicand by 2, an extra bit
is added to the most significant side of the workspace to avoid overflow. After each
iteration, the result is arithmaticlly shifted right twice. The number of iterations is only
half of the length of the operands. After all iterations, the workspace is shifted right
once, and the second most significant bit is set to the first most significant bit as the
result register does not include the extra bit.

Simulation Implimentation
Both algorithims were simulated in Python in attempts to utalize its high level nature
for rapid development. The table for Booth’s algorithim was preformed with a sim-
ple if-then loop, while a switch case was used in modified booth’s algorithim. Simple
integers were used to represent registers.

One objective of this paper is to analyze and compare the peformance of these two
algorithms for various operand lengths. As such, the length of operands had to be
constantly accounted for. Aritmatic bitwise operations, including finding two’s com-
pliment, were all implimented using functions that took length as an input. Further
more, extra bits were cleared after each iteration.

To track down issues and test the validity of the multipliers, a debug function was
written. To allow Python to natively work with the operands, each value is calculated
from its two’s compliment format. The converted numbers are thenmultiplied, and the
result is compared to both Booth’s Algorithim and Modified Booth’s Algorithim. To
ensure that the debugging function itself doesn’t malfunction, all converted operands

2

and expected results are put into a single large table for checking. The exported version
of this table can be seen in table X.

Analysis
Modified Booth’s algorithim only requires half the iterations as Booth’s algorithim. As
such, it can be expected that the benifit of modified Booth’s algorithim increases two
fold with bit length. This can be shown by comparing the two curves in figure X.

Despite this, the nature of both algorithims dictate that modified booth’s algorithim
is not explicitly faster. Iteration count translates to the maxiumum number of additions
and subtractions. Figure X shows the performance of the two algorithims given differ-
ent input lengths, while table x shows the actual data made to generate the plot. There
are some interesting things to note. When operands contain repeating zeros or ones,
both operations preform similarly, as only shifting is required. Operands containing
entirely ones or zeros result in idential preformance. On the contrary, alternating bits
within operands demonstrate where the two algorithims differ, as almost no bits can
be skipped over. Operands made entirely of alternating bits result in the maximum
performance diffrence, in which modified booth’s algorithim is potentially two times
faster.

All of this needs to be considered when designing an ALU. Modified booth’s al-
gorithim may improve speed, but requires substantially more hardware to impliment.
One must consider if die space is to be allocated to optimize multiplication. In many
applications, fast multiplication is unnessesary; many early single-chip processors and
microcontrollers didn’t implimentmultiplication, as theywere intended for simple em-
beded applications.

Conclusion
Hardware multipliers can help accellerate applications in which multiplication is fre-
quent. When implimenting hardwaremultipliers, it’s important to consider the advan-
tages and disadvantages of various multiplier schemes. Modified Booth’s algorithim
gives diminishing returns for smaller operands and requires significantly more logic.
In applications that depend heavily on fast multiplication of large numbers, modified
booth’s algorithim is optimal.

Appendix

1 #!/usr/bin/env python3

2 from tabulate import tabulate

3 import matplotlib

4 import matplotlib.pyplot as plt

5

6 matplotlib.use("pgf")

7 matplotlib.rcParams.update ({

8 "pgf.texsystem": "pdflatex",

9 ’font.family ’: ’serif’,

10 ’text.usetex ’: True ,

3

11 ’pgf.rcfonts ’: False ,

12 })

13

14 with open(’input.txt’) as f:

15 input_string = f.read().split(’\n’)

16

17 def twos_comp(num , length):

18 if num == 0:

19 return 0

20 return abs((num ^ ((1 << length) - 1)) + 1)

21

22 def arithmatic_shiftr(num , length , times):

23 for t in range(times):

24 num = (num >> 1) | ((1 << length - 1) & num)

25 return num

26

27 def arithmatic_shiftl(num , length):

28 if num & (1 << length - 1):

29 return (num << 1) | (1 << length - 1)

30 else:

31 return (num << 1) & ~(1 << length - 1)

32

33

34 def twoscomp_to_int(num , length):

35 if num & (1 << length - 1):

36 return (-1 * twos_comp(num , length))

37 return num & (1 << length) - 1

38

39 def debug(results):

40 headers = [’multiplicand bin’, ’multiplier bin’, ’multiplicand dec’,

’multiplier dec’, ’expected bin’, ’expected dec’, ’booth if correct ’

, ’booth mod if correct ’]

41 table = []

42 for [multiplicand_bin , multiplier_bin , result_booth , result_booth_mod

, length] in results:

43 multiplicand = twoscomp_to_int(multiplicand_bin , length)

44 multiplier = twoscomp_to_int(multiplier_bin , length)

45 expected = multiplicand * multiplier

46 expected_bin = (twos_comp(expected , length * 2), expected) [

expected > 0]

47 success_b = [bin(result_booth), "PASS"] [result_booth ==

expected_bin]

48 success_bm = [bin(result_booth_mod), "PASS"] [result_booth_mod ==

expected_bin]

49

50 table.append ([bin(multiplicand_bin), bin(multiplier_bin),

multiplicand , multiplier , bin(expected_bin), expected , success_b ,

success_bm])

51 print("\nCHECKS: \n", tabulate(table , headers), "\n")

52

53

54

55 def booth(multiplier , multiplicand , length):

56 operations = 0

57 multiplicand_twos_comp = twos_comp(multiplicand , length)

58 result = multiplier << 1 # extended bit

59 for i in range(length):

60 op = result & 0b11

4

61 if op == 0b01:

62 operations += 1

63 result += multiplicand << (length + 1)

64 if op == 0b10:

65 operations += 1

66 result += multiplicand_twos_comp << (length + 1)

67 result &= (1 << (length * 2) + 1) - 1 # get rid of any overflows

68 result = arithmatic_shiftr(result , (length * 2) + 1, 1)

69 result = result >> 1

70 return (result , operations)

71

72 # TODO clean up

73 def booth_mod(multiplier , multiplicand , length):

74 operations = 0

75 multiplicand |= ((1 << length - 1) & multiplicand) << 1 # extend

multiplicand sign to prevent overflow when mult/sub by 2

76 multiplicand_twos_comp = twos_comp(multiplicand , length + 1)

77 result = multiplier << 1 # extended bit

78 for i in range(int((length) / 2)):

79 op = result & 0b111

80 match op:

81 case 0b010 | 0b001: # add

82 print("add")

83 result += multiplicand << (length + 1)

84 operations += 1

85 case 0b011: # add * 2

86 print("add * 2")

87 result += arithmatic_shiftl(multiplicand , length + 1) << (

length + 1)

88 operations += 1

89 case 0b100: # sub * 2

90 print("sub * 2")

91 result += arithmatic_shiftl(multiplicand_twos_comp , length + 1)

<< (length + 1)

92 operations += 1

93 case 0b101 | 0b110: # sub

94 print("sub ")

95 result += multiplicand_twos_comp << (length + 1)

96 operations += 1

97 result &= (1 << ((length * 2) + 2)) - 1 # get rid of any overflows

98 result = arithmatic_shiftr(result , (length * 2) + 2, 2)

99 # *barfs on your dog*

100 result = ((result | ((1 << ((length * 2) + 2)) >> 1)) & ((1 << ((

length * 2) + 1)) - 1)) >> 1

101 return (result , operations)

102

103 if __name__ == "__main__":

104 result_headers = [’multiplicand ’, ’multiplier ’, ’result (bin)’, ’

result (hex)’]

105 result_table = []

106

107 opcount_headers = [’multiplicand ’, ’multiplier ’, ’length ’, ’booth ’, ’

modified booth ’]

108 opcount_table = []

109

110 lengths = [] # for matplotlib plot

111 ops_booth = []

112 ops_mod_booth = []

5

113

114 debug_results = []

115

116 for operation in input_string:

117 if operation == ’’ or operation [0] == ’#’:

118 continue

119 length = len(operation.split(" ")[0])

120 multiplicand = int(operation.split(" ")[0], 2)

121 multiplier = int(operation.split(" ")[1], 2)

122

123 # get result and operation count of both algorithims

124 result_booth = booth(multiplier , multiplicand , length)

125 result_mod_booth = booth_mod(multiplier , multiplicand , length)

126

127 # gather data for matplotlib

128 ops_booth.append(result_booth [1])

129 ops_mod_booth.append(result_mod_booth [1])

130 lengths.append(length)

131

132 #gather data for report results table

133 result_table.append ([bin(multiplicand), bin(multiplier), bin(

result_booth [0]), hex(result_booth [0])])

134

135 #gather data for test function to check if simulator is working

136 debug_results.append ([multiplicand , multiplier , result_booth [0],

result_mod_booth [0], length])

137

138 #gather data for operation count table

139 opcount_table.append ([bin(multiplicand), bin(multiplier), length ,

result_booth [1], result_mod_booth [1]])

140

141 debug(debug_results)

142 print(tabulate(result_table , result_headers , tablefmt="latex"))

143 print(tabulate(opcount_table , opcount_headers))

144

145 # output

146 with open("report/result_table.tex", ’w’) as f:

147 f.write(tabulate(result_table , result_headers , tablefmt="

latex_booktabs"))

148

149 with open("report/speed_table.tex", "w") as f:

150 f.write(tabulate(opcount_table , opcount_headers , tablefmt="

latex_booktabs"))

151

152

153

154 plt.title("Operations vs Operand Length")

155 plt.plot(lengths , ops_booth , ’^--m’, label=’booths algorithim ’)

156 plt.plot(lengths , ops_mod_booth , ’v--c’, label=’modified booths

algorithim ’)

157 plt.gca().set_xlabel("Length of Operands")

158 plt.gca().set_ylabel("Number of Additions and Subtractions")

159 plt.legend(loc=’upper left’)

160 plt.savefig(’report/performance.pgf’)

161

162 iters_booth = []

163 iters_mod_booth = []

164 for length in lengths:

6

165 iters_booth.append(length)

166 iters_mod_booth.append(int(length / 2))

167

168 plt.figure ()

169 plt.plot(lengths , lengths , ’^--m’, label=’booths algorithim ’)

170 plt.plot(lengths , [int(l/2) for l in lengths], ’v--c’, label=’

modified booths algorithim ’)

171 plt.gca().set_xlabel("Operand Length")

172 plt.gca().set_ylabel("Number of iterations")

173 plt.legend(loc=’upper left’)

174 plt.savefig(’report/iterations.pgf’)

4 5 6 7 8 9 10 11 12

Length of Operands

0

2

4

6

8

10

12

N
um

be
ro

fA
dd

iti
on

sa
nd

Su
bt
ra
ct
io
ns

Operations vs Operand Length

booths algorithim
modified booths algorithim

7

4 5 6 7 8 9 10 11 12

Operand Length

2

4

6

8

10

12

N
um

be
ro

fi
te
ra
tio

ns

booths algorithim
modified booths algorithim

multiplicand multiplier length booth modified booth
0b1110 0b1111 4 1 1
0b101 0b0 4 0 0
0b111111 0b111111 6 1 1
0b101110 0b110111 6 3 3
0b111011 0b100011 6 3 3
0b11111 0b1010101 8 8 4
0b11010111 0b1010101 8 8 4
0b1010101 0b11010111 8 5 4
0b1110111 0b110011 8 4 4
0b0 0b1110111 8 4 4
0b101010101 0b101010101 10 10 5
0b1100111011 0b1001110000 10 3 3
0b1001101110 0b101111010 10 6 4
0b10101010101 0b10101010101 12 12 6
0b1111100111 0b0 12 0 0
0b101010101010 0b101010101010 12 11 6
0b111001110000 0b11111111 12 2 2

8

multiplicand multiplier result (bin) result (hex)
0b1110 0b1111 0b10 0x2
0b101 0b0 0b0 0x0
0b111111 0b111111 0b1 0x1
0b101110 0b110111 0b10100010 0xa2
0b111011 0b100011 0b10010001 0x91
0b11111 0b1010101 0b101001001011 0xa4b
0b11010111 0b1010101 0b1111001001100011 0xf263
0b1010101 0b11010111 0b1111001001100011 0xf263
0b1110111 0b110011 0b1011110110101 0x17b5
0b0 0b1110111 0b0 0x0
0b101010101 0b101010101 0b11100011000111001 0x1c639
0b1100111011 0b1001110000 0b10011001111010000 0x133d0
0b1001101110 0b101111010 0b11011010111001101100 0xdae6c
0b10101010101 0b10101010101 0b111000110111000111001 0x1c6e39
0b1111100111 0b0 0b0 0x0
0b101010101010 0b101010101010 0b111000111100011100100 0x1c78e4
0b111001110000 0b11111111 0b111111100111000110010000 0xfe7190

9

